MPIR

The Multiple Precision Integers and Rationals Library
Edition 3.0.0
18 February 2017

Original Authors: Torbjorn Granlund and the GMP Development Team
Subsequent modifications: William Hart and the MPIR Team

This manual describes how to install and use MPIR, the Multiple Precision Integers and Ratio-
nals library, version 3.0.0.

Copyright 1991, 1993-2016 Free Software Foundation, Inc.
Copyright 2008, 2009, 2010 William Hart

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with the Front-Cover Texts being “A GNU
Manual”, and with the Back-Cover Texts being “You have freedom to copy and modify this
GNU Manual, like GNU software”. A copy of the license is included in Appendix C [GNU Free
Documentation License|, page 148.

Table of Contents

MPIR Copying Conditions 1
1 Introduction to MPIR 2
1.1 How to use this Manual 2
2 Installing MPIR 3
2.1 Build Options 3
2.2 ABI and IS A ..o 8
2.3 Notes for Package Buildso i 10
2.4 Building with Microsoft Visual Studio i i 11
2.5 Notes for Particular Systems e 13
2.6 Known Build Problems......... .. 14
2.7 Performance optimizationoiie i 15
3 MPIR BasicCso 16
3.1 Headers and Librarieso 16
3.2 Nomenclature and Types e 16
3.3 MPIR on Windows X64t e e 17
3.4 Function ClassSest 18
3.5 Variable Conventionsttt e 18
3.6 Parameter Conventionsiit ittt 19
3.7 Memory Managementoeiiiiiiini e 20
3.8 ReEnITanCY . . oo 20
3.9 Useful Macros and Constantsoooiiiii e 20
3.10 Compatibility with older versions............ ... i 21
311 EfCIENCY . et 21
312 DEbUGEING . . .ttt 23
313 Profiling e 25
3. 14 AUBOCONT . . oo 27
3. 1D EIaCS o oo 27
4 Reporting Bugs.......... ... 28
5 Integer Functions............ 29
5.1 Initialization FUunctions i e 29
5.2 Assignment Functions i 30
5.3 Combined Initialization and Assignment Functions............... 30
5.4 Conversion FUunCtions.t 31
5.5 Arithmetic FUnCtIOnS i 32
5.6 Division FUNCEIONSt e e 33
5.7 Exponentiation Functions e 35
5.8 Root Extraction FUnCtions 35
5.9 Number Theoretic Functions i 36
5.10 Comparison Functions. e e 39
5.11 Logical and Bit Manipulation Functionso il 39

5.12 Input and Output Functions. 40

ii MPIR 3.0.0

5.13 Random Number Functionsoi i i 41
5.14 Integer Import and Export ... i 41
5.15 Miscellaneous FUncCtions 43
5.16 Special FUNCHIONSot e 43
6 Rational Number Functions............ 46
6.1 Initialization and Assignment Functions 46
6.2 Conversion FUNCEIONS . . . oottt e 47
6.3 Arithmetic FUNCLIONS . . . oot e e 47
6.4 Comparison Functions. 48
6.5 Applying Integer Functions to Rationals.............. 48
6.6 Input and Output Functions.......... i 49
7 Floating-point Functions..................................... 50
7.1 Initialization Functions 50
7.2 Assignment FUnctionso i 52
7.3 Combined Initialization and Assignment Functions................................ 53
7.4 Conversion FUnCtionsS.o i e 53
7.5 Arithmetic FUNCEIONS oottt i, 54
7.6 Comparison Functions. e 5%5)
7.7 Input and Output Functions...... ... i e 55
7.8 Miscellaneous Functionst 56
8 Low-level Functions 58
B L NallS . oot 65
9 Random Number Functions 67
9.1 Random State Initializationt 67
9.2 Random State Seedingoiiiiiiiiii 68
9.3 Random State Miscellaneousttt e 68
10 Formatted Output 69
10.1 Format Stringst e 69
10.2 FUNCHIONS . o oottt e e e 71
10.3 C++ Formatted Outpub. e 72
11 Formatted Input 74
11.1 Formatted Input Strings.o e e 74
11.2 Formatted Input Functions. i 76
11.3 C++4 Formatted Inputo 76
12 CH+4 Class Interface................... .. 78
12.1 CH+ Interface General.o 78
12.2 CH++4 Interface Integers.o 79
12.3 CH+ Interface Rationalst 80
12.4 CH+ Interface FIoats . ..ottt 82
12.5 C++ Interface Random Numbers. i 84

12.6 CH+ Interface LIMItations oov it e e 85

13 .Net Interface 87
13.1 MPIR.Net Feature Overviewooiuuiii i e 87
13.2 Building MPIR.Neto 90
13.3 MPIR.Net Integerscouuuit i e 91
13.4 MPIR.Net Rationals i 97
13.5 MPIR.Net FIoatsottt et 100
13.6 MPIR.Net Random Numbers. ... e 104
13.7 MPIR.Net Settings. . ..ottt e 105

14 Custom Allocation.................. 106

15 Language Bindings i 108

16 Algorithms 111
16.1 Multiplication. e 111

16.1.1 Basecase Multiplicationo i 111
16.1.2 Karatsuba Multiplication.............. . i i 112
16.1.3 Toom 3-Way Multiplicationo 113
16.1.4 Toom 4-Way Multiplicationo i 115
16.1.5 FFT Multiplication.o i e 115
16.1.6 Other Multiplication e e 117
16.1.7 Unbalanced Multiplication. 117
16.2 Division Algorithms........ ... 118
16.2.1 Single Limb Division 118
16.2.2 Basecase DiviSiont 118
16.2.3 Divide and Conquer Divisionc.o i, 119
16.2.4 Exact Division 119
16.2.5 Exact Remainder. i 120
16.2.6 Small Quotient Division 121
16.3 Greatest Common DiviSOr.ooiu i e 121
16.3.1 Binary GOD ... 121
16.3.2 Lehmer’s GOD e e 122
16.3.3 Subquadratic GCD e 123
16.3.4 Extended GCD 123
16.3.5 Jacobi Symbol 123
16.4 Powering Algorithmso 124
16.4.1 Normal Powering. e e 124
16.4.2 Modular Powering. 124
16.5 Root Extraction Algorithms. e 124
16.5.1 Square Root 124
16.5.2 Nth Root 125
16.5.3 Perfect SqUaret 125
16.5.4 Perfect PoOwer 126
16.6 Radix ComVerSIOn vvt ittt e ettt ettt 126
16.6.1 Binary to Radix.o e 126
16.6.2 Radix to Binary 127
16.7 Other Algorithmso i e 128
16.7.1 Prime Testing . ..ot 128
16.7.2 Factorial 128
16.7.3 Binomial Coefficients.......... .. i 128
16.7.4 Fibonacci Numbers. i e 129
16.7.5 Lucas NUmbers. 129

16.7.6 Random Numberso 130

iv MPIR 3.0.0

16.8 Assembler Coding.ttt e e 130
16.8.1 Code Organisationouuiiiii it e 130
16.8.2 Assembler BasiCs. 131
16.8.3 Carry Propagation 131
16.8.4 Cache Handling e e 131
16.8.5 Functional Unitsooiiiii e 132
16.8.6 Floating Point. ... 132
16.8.7 SIMD INStructiOnsttt ettt ettt et 133
16.8.8 Software Pipelining. e 134
16.8.9 Loop Unrollingounuu i e 134
16.8.10 Writing GUIde oottt 135

17 Internals......... 136

17.1 Integer Internals o 136

17.2 Rational Internals. 136

17.3 Float Internals. e 137

17.4 Raw Output Internals....... 139

17.5 C++ Interface Internals. i 139

Appendix A Contributors.................................... 141
Appendix B References........... L. 145
Bl BOOKS . 145
Bl Papers. .o 145
Appendix C GNU Free Documentation License 148
Concept Index ... 155

MPIR Copying Conditions 1

MPIR Copying Conditions

This library is free; this means that everyone is free to use it and free to redistribute it on a free
basis. The library is not in the public domain; it is copyrighted and there are restrictions on its
distribution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further sharing
any version of this library that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the library,
that you receive source code or else can get it if you want it, that you can change this library
or use pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of these
rights. For example, if you distribute copies of the MPIR library, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for the MPIR library. If it is modified by someone else and passed on, we want
their recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

The precise conditions of the license for the MPIR library are found in the Lesser General Public
License version 3 that accompanies the source code, see COPYING.LIB.

9 MPIR 3.0.0

1 Introduction to MPIR

MPIR is a portable library written in C for arbitrary precision arithmetic on integers, rational
numbers, and floating-point numbers. It aims to provide the fastest possible arithmetic for all
applications that need higher precision than is directly supported by the basic C types.

Many applications use just a few hundred bits of precision; but some applications may need
thousands or even millions of bits. MPIR is designed to give good performance for both, by
choosing algorithms based on the sizes of the operands, and by carefully keeping the overhead
at a minimum.

The speed of MPIR is achieved by using fullwords as the basic arithmetic type, by using sophis-
ticated algorithms, by including carefully optimized assembly code for the most common inner
loops for many different CPUs, and by a general emphasis on speed (as opposed to simplicity
or elegance).

There is assembly code for these CPUs: ARM, DEC Alpha 21064, 21164, and 21264, AMD K6,
K6-2, Athlon, K8 and K10, Intel Pentium, Pentium Pro/II/III, Pentium 4, generic x86, Intel
IA-64, Core 2, i7, Atom, Motorola/IBM PowerPC 32 and 64, MIPS R3000, R4000, SPARCv?7,
SuperSPARC, generic SPARCvS, UltraSPARC,

For up-to-date information on, and latest version of, MPIR, please see the MPIR web pages at
http://www.mpir.org/

There are a number of public mailing lists of interest. The development list is
http://groups.google.com/group/mpir-devel/.

The proper place for bug reports is http://groups . google.com/group/mpir-devel. See
Chapter 4 [Reporting Bugs], page 28 for information about reporting bugs.

1.1 How to use this Manual

Everyone should read Chapter 3 [MPIR Basics|, page 16. If you need to install the library
yourself, then read Chapter 2 [Installing MPIR], page 3. If you have a system with multiple
ABISs, then read Section 2.2 [ABI and ISA], page 8, for the compiler options that must be used
on applications. In addition to usual compilation tools, MPIR depends on Yasm to be built. If
yasm is not available on your system, you can download its sources at

http://yasm.tortall.net/Download.html

build your own version and make it available to MPIR configuration system by passing its path
to configure through the ‘--with-yasm’ option. See Section 2.1 [Build Options|, page 3 for
further details.

The rest of the manual can be used for later reference, although it is probably a good idea to
glance through it.

http://www.mpir.org/
http://groups.google.com/group/mpir-devel/
http://groups.google.com/group/mpir-devel
http://yasm.tortall.net/Download.html

Chapter 2: Installing MPIR 3

2 Installing MPIR

MPIR has an autoconf/automake/libtool based configuration system. On a Unix-like system a
basic build can be done with

./configure
make

Some self-tests can be run with
make check

And you can install (under /usr/local by default) with
make install

Important note: by default MPIR produces libraries named libmpir, etc., and the header file
mpir.h. If you wish to have MPIR to build a library named libgmp as well, etc., and a gmp.h
header file, so that you can use mpir with programs designed to only work with GMP, then use
the ‘--enable-gmpcompat’ option when invoking configure:

./configure --enable-gmpcompat
Note gmp.h is only created upon running make install.

MPIR is compatible with GMP when the ‘--enable-gmpcompat’ option is used, except that the
GMP secure cryptographic functions are not available.

Some deprecated GMP functionality may be unavailable if this option is not selected.
If you experience problems, please report them to
http://groups.google.com/group/mpir-devel.

See Chapter 4 [Reporting Bugs|, page 28, for information on what to include in useful bug
reports.

2.1 Build Options

All the usual autoconf configure options are available, run ‘. /configure --help’ for a summary.
The file INSTALL.autoconf has some generic installation information too.

Tools ‘configure’ requires various Unix-like tools. See Section 2.5 [Notes for Particular
Systems|, page 13, for some options on non-Unix systems.

It might be possible to build without the help of ‘configure’, certainly all the code
is there, but unfortunately you’ll be on your own.

Build Directory

To compile in a separate build directory, cd to that directory, and prefix the configure
command with the path to the MPIR source directory. For example

cd /my/build/dir

/my/sources/mpir-3.0.0/configure
Not all ‘make’ programs have the necessary features (VPATH) to support this. In
particular, SunOS and Solaris make have bugs that make them unable to build in a
separate directory. Use GNU make instead.

—--prefix and --exec-prefix
The --prefix option can be used in the normal way to direct MPIR to install under
a particular tree. The default is ‘/usr/local’.

http://groups.google.com/group/mpir-devel

4 MPIR 3.0.0

--exec-prefix can be used to direct architecture-dependent files like 1ibmpir.a to
a different location. This can be used to share architecture-independent parts like
the documentation, but separate the dependent parts. Note however that mpir.h
and mp.h are architecture-dependent since they encode certain aspects of libmpir,
so it will be necessary to ensure both $prefix/include and $exec_prefix/include
are available to the compiler.

--enable-gmpcompat
By default make builds libmpir library files (and libmpirxx if C++ headers are re-
quested) and the mpir.h header file. This option allows you to specify that you
want additional libraries created called libgmp (and libgmpxx), etc., for libraries
and gmp.h for compatibility with GMP (except for GMP secure cryptograhic func-
tions, which are not available in MPIR).

-—-disable-shared, --disable-static
By default both shared and static libraries are built (where possible), but one or
other can be disabled. Shared libraries result in smaller executables and permit code
sharing between separate running processes, but on some CPUs are slightly slower,
having a small cost on each function call.

Native Compilation, ——build=CPU-VENDOR-0S
For normal native compilation, the system can be specified with ‘--build’. By
default ‘./configure’ uses the output from running ‘./config.guess’. On some
systems ‘./config.guess’ can determine the exact CPU type, on others it will be
necessary to give it explicitly. For example,

./configure --build=ultrasparc-sun-solaris2.7

In all cases the ‘08’ part is important, since it controls how libtool generates shared
libraries. Running ‘./config.guess’ is the simplest way to see what it should be,
if you don’t know already.

Cross Compilation, -——host=CPU-VENDOR-0S
When cross-compiling, the system used for compiling is given by ‘--build’ and the

system where the library will run is given by ‘--host’. For example when using a
FreeBSD Athlon system to build GNU/Linux m68k binaries,

./configure --build=athlon-pc-freebsd3.5 --host=m68k-mac-linux-gnu

Compiler tools are sought first with the host system type as a prefix. For example
m68k-mac-linux-gnu-ranlib is tried, then plain ranlib. This makes it possible
for a set of cross-compiling tools to co-exist with native tools. The prefix is the
argument to ‘--host’, and this can be an alias, such as ‘m68k-linux’. But note
that tools don’t have to be setup this way, it’s enough to just have a PATH with a
suitable cross-compiling cc etc.

Compiling for a different CPU in the same family as the build system is a form of
cross-compilation, though very possibly this would merely be special options on a
native compiler. In any case ‘./configure’ avoids depending on being able to run
code on the build system, which is important when creating binaries for a newer
CPU since they very possibly won’t run on the build system.

In all cases the compiler must be able to produce an executable (of whatever format)
from a standard C main. Although only object files will go to make up libmpir,
‘./configure’ uses linking tests for various purposes, such as determining what
functions are available on the host system.

Currently a warning is given unless an explicit ‘--build’ is used when cross-
compiling, because it may not be possible to correctly guess the build system type
if the PATH has only a cross-compiling cc.

Chapter 2: Installing MPIR 5

CPU types

Note that the ‘--target’ option is not appropriate for MPIR. It’s for use when
building compiler tools, with ‘--host’ being where they will run, and ‘--target’
what they’ll produce code for. Ordinary programs or libraries like MPIR are only
interested in the ‘--host’ part, being where they’ll run.

In general, if you want a library that runs as fast as possible, you should configure
MPIR for the exact CPU type your system uses. However, this may mean the
binaries won’t run on older members of the family, and might run slower on other
members, older or newer. The best idea is always to build MPIR for the exact
machine type you intend to run it on.

The following CPUs have specific support. See configure.in for details of what
code and compiler options they select.

e Alpha: ‘alpha’, ‘alphaevb’, ‘alphaev56’, ‘alphapcab6’, ‘alphapcab7’,
‘alphaev6’, ‘alphaev67’, ‘alphaev68’ ‘alphaev?’

e JTA-64: ‘1a64’, ‘itanium’, ‘itanium2’

e MIPS: ‘mips’, ‘mips3’, ‘mips64’

e PowerPC: ‘powerpc’, ‘powerpc64’, ‘powerpcd01’; ‘powerpcd03’, ‘powerpcl05’,
‘powerpcb05’, ‘powerpc601’, ‘powerpc602’, ‘powerpc603’, ‘powerpc603e’,
‘powerpc604’, ‘powerpc604e’, ‘powerpc620’, ‘powerpc630’, ‘powerpc740’,
‘powerpc7400’, ‘powerpc7450’, ‘powerpc750’, ‘powerpc801’, ‘powerpc821’
‘powerpc823’, ‘powerpc860’, ‘powerpc970’

e SPARC: ‘sparc’, ‘sparcv8’, ‘microsparc’, ‘supersparc’, ‘sparcv9’,
‘ultrasparc’, ‘ultrasparc?’, ‘ultrasparc2i’, ‘ultrasparc3’, ‘sparc64’

e x86 family: ‘pentium’, ‘pentiummmx’, ‘pentiumpro’, ‘pentium?2’, ‘pentium3’,
‘pentiuméd’, ‘netburst’, ‘netburstlahf’, ‘prescott’, ‘core’, ‘core2’, ‘penryn’
‘nehalem’, ‘westmere’ ‘sandybridge’ ‘haswell’ ‘nano’ ‘atom’, ‘k5’, ‘k6’, ‘k62’,
‘k63’, ‘k7’, ‘k8’, ‘k10’ ‘k102’ ‘piledriver’ ‘bulldozer’ ‘bobcat’ ‘viac3’,
‘viac32’

e Other: ‘arm’,

CPUs not listed will use generic C code.

Generic C Build

If some of the assembly code causes problems, or if otherwise desired, the generic C
code can be selected with CPU ‘none’. For example,

./configure --host=none-unknown-freebsd3.5

Note that this will run quite slowly, but it should be portable and should at least
make it possible to get something running if all else fails.

Fat binary, -—enable-fat

ABI

Using ——enable-fat selects a “fat binary” build on x86 or x86_64 systems, where op-
timized low level subroutines are chosen at runtime according to the CPU detected.
This means more code, but gives reasonable performance from a single binary for
all x86 chips, or similarly for all x86_64 chips. (This option might become available
for more architectures in the future.)

On some systems MPIR supports multiple ABIs (application binary interfaces),
meaning data type sizes and calling conventions. By default MPIR chooses the best
ABI available, but a particular ABI can be selected. For example

./configure --host=mips64-sgi-irix6 ABI=n32
See Section 2.2 [ABI and ISAJ, page 8, for the available choices on relevant CPUs,
and what applications need to do.

MPIR 3.0.0

--with-yasm

CC, CFLAGS

CPPFLAGS

By default MPIR will look for a system-wide Yasm using the which command.
Passing —-with-yasm let MPIR use a version of Yasm at a non-standard location.
This is useful if none is available in PATH. With this option a full path to Yasm’s
binary should be given, for example

./configure --with-yasm=/usr/local/bin/yasm

By default the C compiler used is chosen from among some likely candidates, with
gcc normally preferred if it’s present. The usual ‘CC=whatever’ can be passed to
‘./configure’ to choose something different.

For various systems, default compiler flags are set based on the CPU and compiler.
The usual ‘CFLAGS="-whatever"’ can be passed to ‘. /configure’ to use something
different or to set good flags for systems MPIR doesn’t otherwise know.

The ‘CC’ and ‘CFLAGS’ used are printed during ‘./configure’, and can be found
in each generated Makefile. This is the easiest way to check the defaults when
considering changing or adding something.

Note that when ‘CC’ and ‘CFLAGS’ are specified on a system supporting multiple ABIs
it’s important to give an explicit ‘ABI=whatever’, since MPIR can’t determine the
ABI just from the flags and won’t be able to select the correct assembler code.

If just ‘CC’ is selected then normal default ‘CFLAGS’ for that compiler will be used
(if MPIR recognises it). For example ‘CC=gcc’ can be used to force the use of GCC,
with default flags (and default ABI).

4

Any flags like ‘-D’ defines or ‘-I’ includes required by the preprocessor should be
set in ‘CPPFLAGS’ rather than ‘CFLAGS’. Compiling is done with both ‘CPPFLAGS’
and ‘CFLAGS’, but preprocessing uses just ‘CPPFLAGS’. This distinction is because
most preprocessors won’t accept all the flags the compiler does. Preprocessing is
done separately in some configure tests, and in the ‘ansi2knr’ support for K&R
compilers.

CC_FOR_BUILD

Some build-time programs are compiled and run to generate host-specific data ta-
bles. ‘CC_FOR_BUILD’ is the compiler used for this. It doesn’t need to be in any
particular ABI or mode, it merely needs to generate executables that can run. The
default is to try the selected ‘CC’ and some likely candidates such as ‘cc’ and ‘gec’,
looking for something that works.

No flags are used with ‘CC_FOR_BUILD’ because a simple invocation like ‘cc foo.c’
should be enough. If some particular options are required they can be included as
for instance ‘CC_FOR_BUILD="cc -whatever"’.

C++ Support, ——enable-cxx

C++ support in MPIR can be enabled with ‘--enable-cxx’, in which case a C++
compiler will be required. As a convenience ‘--enable-cxx=detect’ can be used
to enable C++ support only if a compiler can be found. The C++ support consists
of a library libmpirxx.la and header file mpirxx.h (see Section 3.1 [Headers and
Libraries], page 16).

A separate 1ibmpirxx.la has been adopted rather than having C++ objects within
libmpir.la in order to ensure dynamic linked C programs aren’t bloated by a
dependency on the C++ standard library, and to avoid any chance that the C++
compiler could be required when linking plain C programs.

libmpirxx.la will use certain internals from 1ibmpir.la and can only be expected
to work with 1ibmpir.la from the same MPIR version. Future changes to the rele-

Chapter 2: Installing MPIR 7

vant internals will be accompanied by renaming, so a mismatch will cause unresolved
symbols rather than perhaps mysterious misbehaviour.

In general libmpirxx.la will be usable only with the C++ compiler that built it,
since name mangling and runtime support are usually incompatible between different
compilers.

CXX, CXXFLAGS

When C++ support is enabled, the C++ compiler and its flags can be set with vari-
ables ‘CXX’ and ‘CXXFLAGS’ in the usual way. The default for ‘CXX’ is the first compiler
that works from a list of likely candidates, with g++ normally preferred when avail-
able. The default for ‘CXXFLAGS’ is to try ‘CFLAGS’, ‘CFLAGS’ without ‘-g’, then for
g++ either ‘-g -02’ or ‘=02, or for other compilers ‘-g’ or nothing. Trying ‘CFLAGS’
this way is convenient when using ‘gcc’ and ‘g++’ together, since the flags for ‘gec’
will usually suit ‘g++’.

It’s important that the C and C++ compilers match, meaning their startup and
runtime support routines are compatible and that they generate code in the same
ABI (if there’s a choice of ABIs on the system). ¢./configure’ isn’t currently able to
check these things very well itself, so for that reason ‘--disable-cxx’ is the default,
to avoid a build failure due to a compiler mismatch. Perhaps this will change in the
future.

Incidentally, it’s normally not good enough to set ‘CXX’ to the same as ‘CC’. Although

gcc for instance recognises foo.cc as C++ code, only g++ will invoke the linker the
right way when building an executable or shared library from C++ object files.

Temporary Memory, ——enable-alloca=<choice>
MPIR allocates temporary workspace using one of the following three methods,
which can be selected with for instance ‘--enable-alloca=malloc-reentrant’.
e ‘alloca’ - C library or compiler builtin.
e ‘malloc-reentrant’ - the heap, in a re-entrant fashion.

e ‘malloc-notreentrant’ - the heap, with global variables.

3

For convenience, the following choices are also available. ‘--~disable-alloca’ is the

same as ‘no’.
e ‘yes’ - a synonym for ‘alloca’.
e ‘no’ - a synonym for ‘malloc-reentrant’.

e ‘reentrant’ - alloca if available, otherwise ‘malloc-reentrant’. This is the
default.

e ‘notreentrant’ - alloca if available, otherwise ‘malloc-notreentrant’.

alloca is reentrant and fast, and is recommended. It actually allocates just small
blocks on the stack; larger ones use malloc-reentrant.

‘malloc-reentrant’ is, as the name suggests, reentrant and thread safe, but
‘malloc-notreentrant’ is faster and should be used if reentrancy is not required.

The two malloc methods in fact use the memory allocation functions selected by mp_
set_memory_functions, these being malloc and friends by default. See Chapter 14
[Custom Allocation], page 106.

An additional choice ‘--enable-alloca=debug’ is available, to help when debugging
memory related problems (see Section 3.12 [Debugging], page 23).

FFT Multiplication, —-disable-fft
By default multiplications are done using Karatsuba, Toom, and FFT algorithms.
The FFT is only used on large to very large operands and can be disabled to save
code size if desired.

8 MPIR 3.0.0

Assertion Checking, -—enable-assert
This option enables some consistency checking within the library. This can be of
use while debugging, see Section 3.12 [Debugging], page 23.

Execution Profiling, --enable-profiling=prof/gprof/instrument
Enable profiling support, in one of various styles, see Section 3.13 [Profiling], page 25.

MPN_PATH Various assembler versions of mpn subroutines are provided. For a given CPU, a
search is made though a path to choose a version of each. For example ‘sparcv8’
has

MPN_PATH="sparc32/v8 sparc32 generic"

which means look first for v8 code, then plain sparc32 (which is v7), and finally
fall back on generic C. Knowledgeable users with special requirements can specify
a different path. Normally this is completely unnecessary.

Documentation
The source for the document you’re now reading is doc/mpir.texi, in Texinfo
format, see Tezinfo.

Info format ‘doc/mpir.info’ is included in the distribution. The usual automake
targets are available to make PostScript, DVI, PDF and HTML (these will require
various TEX and Texinfo tools).

DocBook and XML can be generated by the Texinfo makeinfo program too, see
Section “Options for makeinfo” in Texinfo.

Some supplementary notes can also be found in the doc subdirectory.

2.2 ABI and ISA

ABI (Application Binary Interface) refers to the calling conventions between functions, meaning
what registers are used and what sizes the various C data types are. ISA (Instruction Set
Architecture) refers to the instructions and registers a CPU has available.

Some 64-bit ISA CPUs have both a 64-bit ABI and a 32-bit ABI defined, the latter for com-
patibility with older CPUs in the family. MPIR supports some CPUs like this in both ABIs.
In fact within MPIR ‘ABI’ means a combination of chip ABI, plus how MPIR chooses to use it.
For example in some 32-bit ABIs, MPIR may support a limb as either a 32-bit long or a 64-bit
long long.

By default MPIR chooses the best ABI available for a given system, and this generally gives
significantly greater speed. But an ABI can be chosen explicitly to make MPIR compatible with
other libraries, or particular application requirements. For example,

./configure ABI=32
In all cases it’s vital that all object code used in a given program is compiled for the same ABI.

Usually a limb is implemented as a long. When a long long limb is used this is encoded in
the generated mpir.h. This is convenient for applications, but it does mean that mpir.h will
vary, and can’t be just copied around. mpir.h remains compiler independent though, since all
compilers for a particular ABI will be expected to use the same limb type.

Currently no attempt is made to follow whatever conventions a system has for installing library
or header files built for a particular ABI. This will probably only matter when installing multiple
builds of MPIR, and it might be as simple as configuring with a special ‘libdir’, or it might
require more than that. Note that builds for different ABIs need to done separately, with a fresh
(make distclean), ./configure and make.

Chapter 2: Installing MPIR 9

AMD64 (‘x86_64")
On AMDG64 systems supporting both 32-bit and 64-bit modes for applications, the
following ABI choices are available.

‘ABI=64" The 64-bit ABI uses 64-bit limbs and pointers and makes full use of
the chip architecture. This is the default. Applications will usually not
need special compiler flags, but for reference the option is

gcc -m64

‘ABI=32’ The 32-bit ABI is the usual i386 conventions. This will be slower, and
is not recommended except for inter-operating with other code not yet
64-bit capable. Applications must be compiled with

gcc -m32
(In GCC 2.95 and earlier there’s no ‘-m32’ option, it’s the only mode.)

IA-64 under HP-UX (‘ia64*-*-hpux*’, ‘itanium*-*-hpux*’)
HP-UX supports two ABIs for IA-64. MPIR performance is the same in both.

‘ABI=32" In the 32-bit ABI, pointers, ints and longs are 32 bits and MPIR uses
a 64 bit long long for a limb. Applications can be compiled without
any special flags since this ABI is the default in both HP C and GCC,
but for reference the flags are

gcc -milp32
cc +DD32

‘ABI=64" In the 64-bit ABI, longs and pointers are 64 bits and MPIR uses a long
for a limb. Applications must be compiled with
gcc -mlp64
cc +DD64

On other TA-64 systems, GNU/Linux for instance, ‘ABI=64’ is the only choice.

PowerPC 64 (‘powerpc64’, ‘powerpc620’, ‘powerpc630’, ‘powerpc970’)
‘ABI=aix64’
The AIX 64 ABI uses 64-bit limbs and pointers and is the default on
PowerPC 64 ‘x-*-aix*’ systems. Applications must be compiled with

gcc -maix64
xlc -q64

‘ABI=mode32’
The ‘mode32’ ABI uses a 64-bit long long limb but with the chip still
in 32-bit mode and using 32-bit calling conventions. This is the default
on PowerPC 64 ‘*-*-darwin*’ systems. No special compiler options
are needed for applications.

‘ABI=32’ This is the basic 32-bit PowerPC ABI, with a 32-bit limb. No special
compiler options are needed for applications.

MPIR speed is greatest in ‘aix64’ and ‘mode32’. In ‘ABI=32’ only the 32-bit ISA is
used and this doesn’t make full use of a 64-bit chip. On a suitable system we could
perhaps use more of the ISA, but there are no plans to do so.

10 MPIR 3.0.0

Sparc V9 (‘sparc64’, ‘sparcv9’, ‘ultrasparc*’)
‘ABI=64" The 64-bit V9 ABI is available on the various BSD sparc64 ports, recent
versions of Sparc64 GNU/Linux, and Solaris 2.7 and up (when the kernel
is in 64-bit mode). GCC 3.2 or higher, or Sun cc is required. On
GNU/Linux, depending on the default gcc mode, applications must be
compiled with
gcc -m64

On Solaris applications must be compiled with
gcc -m64 -mptr64 -Wa,-xarch=v9 -mcpu=v9
cc -xarch=v9

On the BSD sparc64 systems no special options are required, since 64-
bits is the only ABI available.

‘ABI=32’ For the basic 32-bit ABI, MPIR still uses as much of the V9 ISA as it
can. In the Sun documentation this combination is known as “v8plus”.
On GNU/Linux, depending on the default gcc mode, applications may
need to be compiled with

gcc -m32
On Solaris, no special compiler options are required for applications,
though using something like the following is recommended. (gcc 2.8
and earlier only support ‘-mv8’ though.)

gcc -mv8plus

cc -xarch=v8plus

MPIR speed is greatest in ‘ABI=64’, so it’s the default where available. The speed
is partly because there are extra registers available and partly because 64-bits is
considered the more important case and has therefore had better code written for
it.

Don’t be confused by the names of the ‘-m’ and ‘-x’ compiler options, they’re called
‘arch’ but effectively control both ABI and ISA.

On Solaris 2.6 and earlier, only ‘ABI=32’ is available since the kernel doesn’t save
all registers.

On Solaris 2.7 with the kernel in 32-bit mode, a normal native build will reject
‘ABI=64’ because the resulting executables won’t run. ‘ABI=64’ can still be built if
desired by making it look like a cross-compile, for example

./configure --build=none --host=sparcv9-sun-solaris2.7 ABI=64

2.3 Notes for Package Builds
MPIR should present no great difficulties for packaging in a binary distribution.

Libtool is used to build the library and ‘-version-info’ is set appropriately, having started
from ‘3:0:0” in GMP 3.0 (see Section “Library interface versions” in GNU Libtool).

The GMP 4 series and MPIR 1 series will be upwardly binary compatible in each release and
will be upwardly binary compatible with all of the GMP 3 series. Additional function interfaces
may be added in each release, so on systems where libtool versioning is not fully checked by
the loader an auxiliary mechanism may be needed to express that a dynamic linked application
depends on a new enough MPIR.

From MPIR 2.0.0 binary compatibility with the GMP 5 series will be maintained with the excep-
tion of the availability of secure functions for cryptography, which will not be supported in MPIR.

Chapter 2: Installing MPIR 11

For full GMP compatibility, including deprecated functionality, the ‘-~-~enable-gmpcompat’ con-
figuration option must be used.

An auxiliary mechanism may also be needed to express that libmpirxx.la (from --enable-cxx,
see Section 2.1 [Build Options|, page 3) requires libmpir.la from the same MPIR version, since
this is not done by the libtool versioning, nor otherwise. A mismatch will result in unresolved
symbols from the linker, or perhaps the loader.

When building a package for a CPU family, care should be taken to use ‘--host’ (or ‘--build’)
to choose the least common denominator among the CPUs which might use the package. For
example this might mean plain ‘sparc’ (meaning V7) for SPARCs.

For x86s, ——enable-fat sets things up for a fat binary build, making a runtime selection of
optimized low level routines. This is a good choice for packaging to run on a range of x86 chips.

Users who care about speed will want MPIR built for their exact CPU type, to make best use
of the available optimizations. Providing a way to suitably rebuild a package may be useful.
This could be as simple as making it possible for a user to omit ‘--build’ (and ‘--host’) so
‘./config.guess’ will detect the CPU. But a way to manually specify a ‘~-build’ will be
wanted for systems where ‘. /config.guess’ is inexact.

On systems with multiple ABIs, a packaged build will need to decide which among the choices
is to be provided, see Section 2.2 [ABI and ISA]|, page 8. A given run of ‘./configure’ etc will
only build one ABI. If a second ABI is also required then a second run of ‘./configure’ etc
must be made, starting from a clean directory tree (‘make distclean’).

As noted under “ABI and ISA”, currently no attempt is made to follow system conventions
for install locations that vary with ABI, such as /usr/lib/sparcv9 for ‘ABI=64’ as opposed to
/usr/1ib for ‘ABI=32’. A package build can override ‘libdir’ and other standard variables as
necessary.

Note that mpir.h is a generated file, and will be architecture and ABI dependent. When
attempting to install two ABIs simultaneously it will be important that an application compile
gets the correct mpir.h for its desired ABI. If compiler include paths don’t vary with ABI
options then it might be necessary to create a /usr/include/mpir.h which tests preprocessor
symbols and chooses the correct actual mpir.h.

2.4 Building with Microsoft Visual Studio

MPIR can be built with the professional and higher versions of Visual Studio 2012, 2013, 2015
and 2017. It can also be built with the community editions of Visual Studio 2015 and 2017.
If the assembler optimised versions of MPIR are required, then both Python 3 and the YASM
assembler also need to be installed. MPIR can also be built with the Intel C/C++ compiler that
can be integrated into versions of Visual Studio.

Python 3 can be obtained from:
https://www.python.org/

and the YASM assembler from:
http://yasm.tortall.net/Download.html

This assembler (vsyasm.exe, NOT yasm.exe) should be placed in the directory C:\Program
Files\yasm.

Alternatively vsyasm.exe can be placed elsewhere provided that the environment variable
‘YASMPATH’ gives its location.

https://www.python.org/
http://yasm.tortall.net/Download.html

19 MPIR 3.0.0

Building MPIR
A build of MPIR is started by double clicking on the file mpir.sln in the appropriate
sub-directory within the MPIR root directory:

Visual Studio 2012: mpir/build.vcll/mpir.sln
Visual Studio 2013: mpir/build.vcl2/mpir.sln
Visual Studio 2015: mpir/build.vcl4/mpir.sln
Visual Studio 2017: mpir/build.vcl5/mpir.sln

Visual Studio will then display a list of individual build projects from which an
appropriate version of MPIR can be built. For example, a typical list of projects is:

dll_mpir_gc standard DLL, no assembler (win32 and x64)
dll_mpir_p3 assembly optimised DLL for pentium 3 (win32)
lib_mpir_p3 assembly optimised static library for

pentium 3 (x64)

lib_mpir_core2 assembly optimised static library for
core2 (x64)

dll_mpir_core2 assembly optimised DLL for core2 (x64)

MPIR can be built either as a static library or as a DLL. A DLL will include both
the C and C++ features of MPIR but a static library will include only the C features
so in this case the project:

lib_mpir_cxx the MPIRXX C++ static library (win32 and x64)
should also be built to provide the MPIR C++ static library (‘MPIRXX’).

Before a project is built, Visual Studio should be set to the required configuration
(Release or Debug) and the required target architecture (win32 or x64). The build
process puts the output files into one of the two sub-directories:

mpir/1lib

mpir/dll
depending on whether static library or DLL versions have been built.

Additional Assembler Optimised Versions
The Visual Studio builds for MPIR are initially provided with a small set of as-
sembler optimised projects but many more are available and can be obtained by
running the Python program mpir_config.py <N> that is in the mpir\build-ve di-
rectory. The value of <N> required depends on the version of Visual Studio in use
as follows:

Visual Studio 2012: 11
Visual Studio 2013: 12
Visual Studio 2015: 14
Visual Studio 2017: 15

This program, which has to be run before Visual Studio, provides a list of all the as-
sembler optimised versions of MPIR that are available. Any number of versions can
be chosen and these builds will then be available when Visual Studio is subsequently
opened by double clicking on mpir.sln.

Testing Visual Studio versions of MPIR
Testing a version of the library once it has been built is started by double clicking
on the appropriate solution file:
Visual Studio 2012: mpir/build.vcll/mpir-tests.sln
Visual Studio 2013: mpir/build.vcl2/mpir-tests.sln
Visual Studio 2015: mpir/build.vcl4/mpir-tests.sln
Visual Studio 2017: mpir/build.vcl5/mpir-tests.sln
The tests are always run on the last version of MPIR built and it is important that
the configuration set for building the tests (Release or Debug, win32 or x64) is the

Chapter 2: Installing MPIR 13

same as that used to build MPIR. When testing the static library versions of MPIR,
both the C (mpir.lib) and C++ (mpirxx.lib) must be built. After loading there will
be a large list of test projects starting:

Solution ‘mpir-tests’ (202 projects)
add-test-1ib
bswap
constants

The project ‘add-test-1ib’ should be selected and built first, after which the solu-
tion as a whole (i.e. the first line shown above) can be selected to build all the tests.
After the build has completed, the tests are run by executing the Python program
run-tests.py in the appropriate Visual Studio build sub-directory, for example,
for Visual Studio 2017:

mpir/build.vcl5/mpir-tests/run-tests.py

2.5 Notes for Particular Systems

ARM On systems ‘arm*-*-*’_ versions of GCC up to and including 2.95.3 have a bug in
unsigned division, giving wrong results for some operands. MPIR ‘./configure’
will demand GCC 2.95.4 or later.

Floating Point Mode
On some systems, the hardware floating point has a control mode which can set
all operations to be done in a particular precision, for instance single, double or
extended on x86 systems (x87 floating point). The MPIR functions involving a
double cannot be expected to operate to their full precision when the hardware is
in single precision mode. Of course this affects all code, including application code,
not just MPIR.

MS-DOS and MS Windows
On an MS Windows system Cygwin and Cygwin64 and Msys2/Mingw can be used,
they are ports of GCC and the various GNU tools.

http://www.cygwin.com/

https://msys2.github.io/
Both 32 and 64 bit versions of Msys2/Mingw and Cygwin are supported. Building
on these systems is very similar to building on Linux.

We strongly recommend using recent versions of Cygwin/Msys2.

MS Windows DLLs
On systems ‘*-*-cygwin¥’ and ‘*-*-mingw*’ and ‘*-*-msys’ static and DLL li-
braries can’t both be built, since certain export directives in mpir.h must be dif-
ferent. Therefore you must specify whether you want a shared library or a static
library. For example if you want just a shared library you can type the following.

./configure --disable-static --enable-shared
Libtool doesn’t install a .1ib format import library, but it can be created with
MS 1ib as follows, and copied to the install directory. Similarly for libmpir and
libmpirxx.

cd .libs

1ib /def:1libgmp-3.dll.def /out:1libgmp-3.lib

Sparc CPU Types
‘sparcv8’ or ‘supersparc’ on relevant systems will give a significant performance
increase over the V7 code selected by plain ‘sparc’.

http://www.cygwin.com/
https://msys2.github.io/

14 MPIR 3.0.0

Sparc App Regs
The MPIR assembler code for both 32-bit and 64-bit Sparc clobbers the “application
registers” g2, g3 and g4, the same way that the GCC default ‘-mapp-regs’ does
(see Section “SPARC Options” in Using the GNU Compiler Collection (GCQC)).

This makes that code unsuitable for use with the special V9 ‘-mcmodel=embmedany’
(which uses g4 as a data segment pointer), and for applications wanting to use those
registers for special purposes. In these cases the only suggestion currently is to build
MPIR with CPU ‘none’ to avoid the assembler code.

SPARC Solaris
Building applications against MPIR on SPARC Solaris (including make check)
requires the LD_LIBRARY_PATH to be set appropriately. In particular if one is
building with ABI=64 the linker needs to know where to find 1ibgcc (often often
/usr/lib/sparcv9 or /usr/local/lib/sparcv9 or /1lib/sparcv9).

It is not enough to specify the location in LD_LIBRARY_PATH_64 unless LD_LIBRARY_
PATH_64 is added to LD_LIBRARY_PATH. Specifically the 64 bit 1ibgcc path needs
to be in LD_LIBRARY_PATH.

The linker is able to automatically distinguish 32 and 64 bit libraries, so it is safe
to include paths to both the 32 and 64 bit libraries in the LD_LIBRARY_PATH.

Solaris 10 First Release on SPARC
MPIR fails to build with Solaris 10 first release. Patch 123647-01 for SPARC,
released by Sun in August 2006 fixes this problem.

x86 CPU Types
‘i586’, ‘pentium’ or ‘pentiummmx’ code is good for its intended P5 Pentium chips,
but quite slow when run on Intel P6 class chips (PPro, P-II, P-III). ‘1386’ is a
better choice when making binaries that must run on both.

x86 MMX and SSE2 Code
If the CPU selected has MMX code but the assembler doesn’t support it, a warning
is given and non-MMX code is used instead. This will be an inferior build, since the
MMX code that’s present is there because it’s faster than the corresponding plain
integer code. The same applies to SSE2.

Old versions of ‘gas’ don’t support MMX instructions, in particular version 1.92.3
that comes with FreeBSD 2.2.8 or the more recent OpenBSD 3.1 doesn’t.

Solaris 2.6 and 2.7 as generate incorrect object code for register to register movq
instructions, and so can’t be used for MMX code. Install a recent gas if MMX code
is wanted on these systems.

2.6 Known Build Problems

You might find more up-to-date information at http://www.mpir.org/.

GCC XOP issues
GCC from version 4.6.0 to 4.8.x have a problem with the XOP instruction, especially
with ‘=03’ on at least AMD Opteron ‘62xx/63xx’, ‘FX-(4,6,8) [13]xx’ and the
Devil’s Canyon ‘9xxx’ and the Kaveri APUs.

A workaround is to pass ‘-mno-xop’ when compiling with ‘-03’.

http://www.mpir.org/

Chapter 2: Installing MPIR 15

2.7 Performance optimization

For optimal performance, build MPIR for the exact CPU type of the target computer, see
Section 2.1 [Build Options|, page 3.

Unlike what is the case for most other programs, the compiler typically doesn’t matter much,
since MPIR uses assembly language for the most critical operations.

In particular for long-running MPIR applications, and applications demanding extremely large
numbers, building and running the tuneup program in the tune subdirectory, can be important.
For example,

cd tune
make tuneup
./tuneup

will generate better contents for the gmp-mparam.h parameter file.

To use the results, put the output in the file indicated in the ‘Parameters for ...’ header.
Then recompile from scratch.

The tuneup program takes one useful parameter, ‘~f NNN’, which instructs the program how long
to check FFT multiply parameters. If you're going to use MPIR for extremely large numbers,
you may want to run tuneup with a large NNN value.

16 MPIR 3.0.0

3 MPIR Basics

Using functions, macros, data types, etc. not documented in this manual is strongly discouraged.
If you do so your application is guaranteed to be incompatible with future versions of MPIR.

3.1 Headers and Libraries

All declarations needed to use MPIR are collected in the include file mpir.h. It is designed to
work with both C and C++ compilers.

#include <mpir.h>

Note however that prototypes for MPIR functions with FILE * parameters are only provided if
<stdio.h> is included too.

#include <stdio.h>
#include <mpir.h>

Likewise <stdarg.h> (or <varargs.h>) is required for prototypes with va_list parameters,
such as gmp_vprintf. And <obstack.h> for prototypes with struct obstack parameters, such
as gmp_obstack_printf, when available.

All programs using MPIR must link against the libmpir library. On a typical Unix-like system
this can be done with ‘~1mpir’ respectively, for example

gcc myprogram.c -lmpir

MPIR, C++ functions are in a separate libmpirxx library. This is built and installed if C++
support has been enabled (see Section 2.1 [Build Options|, page 3). For example,

g++ mycxxprog.cc -lmpirxx -lmpir
MPIR is built using Libtool and an application can use that to link if desired, see GNU Libtool

If MPIR has been installed to a non-standard location then it may be necessary to use ‘-1’
and ‘-L’ compiler options to point to the right directories, and some sort of run-time path for a
shared library.

3.2 Nomenclature and Types

In this manual, integer usually means a multiple precision integer, as defined by the MPIR
library. The C data type for such integers is mpz_t. Here are some examples of how to declare
such integers:

mpz_t sum;
struct foo { mpz_t x, y; };

mpz_t vec[20];

Rational number means a multiple precision fraction. The C data type for these fractions is
mpqg_t. For example:

mpq_t quotient;

Floating point number or Float for short, is an arbitrary precision mantissa with a limited
precision exponent. The C data type for such objects is mpf_t. For example:

mpf_t fp;

Chapter 3: MPIR Basics 17

The floating point functions accept and return exponents in the C type mp_exp_t. Currently
this is usually a long, but on some systems it’s an int for efficiency.

A limb means the part of a multi-precision number that fits in a single machine word. (We chose
this word because a limb of the human body is analogous to a digit, only larger, and containing
several digits.) Normally a limb is 32 or 64 bits. The C data type for a limb is mp_limb_t.

Counts of limbs are represented in the C type mp_size_t. Currently this is normally a long,
but on some systems it’s an int for efficiency.

Counts of bits of a multi-precision number are represented in the C type mp_bitcnt_t. Currently
this is always an unsigned long, but on some systems it will be an unsigned long long in the
future .

Random state means an algorithm selection and current state data. The C data type for such
objects is gmp_randstate_t. For example:

gmp_randstate_t rstate;

Also, in general mp_bitcnt_t is used for bit counts and ranges, and size_t is used for byte or
character counts.

3.3 MPIR on Windows x64

Although Windows x64 is a 64-bit operating system, Microsoft has decided to make long integers
32-bits, which is inconsistent when compared with almost all other 64-bit operating systems.
This has caused many subtle bugs when open source code is ported to Windows x64 because
many developers reasonably expect to find that long integers on a 64-bit operating system will
be 64 bits long.

MPIR contains functions with suffixes of _ui and _si that are used to input unsigned and signed
integers into and convert them for use with MPIR’s multiple precision integers (mpz types). For
example, the following functions set an mpz_t integer from unsigned and signed long integers
respectively.

void mpz_set_ui (mpz_t, unsigned long int) [Function]

void mpz_set_si (mpzt, signed long int) [Function]

Also, the following functions obtain unsigned and signed long int values from an MPIR mul-
tiple precision integer (mpz_t).
unsigned long int mpz_get_ui (mpz_t) [Function]

signed long int mpz_get_si (mpz_t) [Function]

To bring MPIR on Windows x64 into line with other 64-bit operating systems two new types
have been introduced throughout MPIR:

e mpir_ui defined as unsigned long int on all but Windows x64, defined as unsigned long
long int on Windows x64

e mpir_si defined as signed long int on all but Windows x64, defined as signed long long
int on Windows x64

The above prototypes in MPIR 2.6.0 are changed to:

18 MPIR 3.0.0

void mpz_set_ui (mpz_t, mpir_ui) [Function]
void mpz_set_si (mpz_t, mpir_si) [Function]
mpir_ui mpz_get_ui (mpz_t) [Function]
mpir_si mpz_get_si (mpz_t) [Function]

These changes are applied to all MPIR functions with _ui and _si suffixes.

3.4 Function Classes

There are five classes of functions in the MPIR library:

1. Functions for signed integer arithmetic, with names beginning with mpz_. The associated
type is mpz_t. There are about 150 functions in this class. (see Chapter 5 [Integer Func-
tions|, page 29)

2. Functions for rational number arithmetic, with names beginning with mpq_. The associated
type is mpq_t. There are about 40 functions in this class, but the integer functions can be
used for arithmetic on the numerator and denominator separately. (see Chapter 6 [Rational
Number Functions|, page 46)

3. Functions for floating-point arithmetic, with names beginning with mpf_. The associated
type is mpf_t. There are about 60 functions is this class. (see Chapter 7 [Floating-point
Functions], page 50)

4. Fast low-level functions that operate on natural numbers. These are used by the functions
in the preceding groups, and you can also call them directly from very time-critical user
programs. These functions’ names begin with mpn_. The associated type is array of mp_
limb_t. There are about 30 (hard-to-use) functions in this class. (see Chapter 8 [Low-level
Functions], page 58)

5. Miscellaneous functions. Functions for setting up custom allocation and functions for gener-

ating random numbers. (see Chapter 14 [Custom Allocation], page 106, and see Chapter 9
[Random Number Functions|, page 67)

3.5 Variable Conventions

MPIR functions generally have output arguments before input arguments. This notation is by
analogy with the assignment operator.

MPIR lets you use the same variable for both input and output in one call. For example, the
main function for integer multiplication, mpz_mul, can be used to square x and put the result
back in x with

mpz_mul (x, X, X);

Before you can assign to an MPIR variable, you need to initialize it by calling one of the special
initialization functions. When you’re done with a variable, you need to clear it out, using one
of the functions for that purpose. Which function to use depends on the type of variable. See
the chapters on integer functions, rational number functions, and floating-point functions for
details.

A variable should only be initialized once, or at least cleared between each initialization. After
a variable has been initialized, it may be assigned to any number of times.

For efficiency reasons, avoid excessive initializing and clearing. In general, initialize near the
start of a function and clear near the end. For example,

void

Chapter 3: MPIR Basics 19

foo (void)
{
mpz_t n;
int i;

mpz_init (n);
for (i = 1; i < 100; i++)
{
mpz_mul (n, ...);
mpz_fdiv_q (n, ...);

}

mpz_clear (n);

3.6 Parameter Conventions

When an MPIR variable is used as a function parameter, it’s effectively a call-by-reference,
meaning if the function stores a value there it will change the original in the caller. Parame-
ters which are input-only can be designated const to provoke a compiler error or warning on
attempting to modify them.

When a function is going to return an MPIR result, it should designate a parameter that it sets,
like the library functions do. More than one value can be returned by having more than one
output parameter, again like the library functions. A return of an mpz_t etc doesn’t return the
object, only a pointer, and this is almost certainly not what’s wanted.

Here’s an example accepting an mpz_t parameter, doing a calculation, and storing the result to
the indicated parameter.

void
foo (mpz_t result, const mpz_t param, mpir_ui n)
{
mpir_ui 1i;
mpz_mul_ui (result, param, n);
for (i = 1; i < n; i++)
mpz_add_ui (result, result, ix7);

}

int

main (void)

{
mpz_t r, n;
mpz_init (r);
mpz_init_set_str (n, "123456", 0);
foo (r, n, 20L);
gmp_printf ("%Zd\n", r);
return O;

}

foo works even if the mainline passes the same variable for param and result, just like the
library functions. But sometimes it’s tricky to make that work, and an application might not
want to bother supporting that sort of thing.

For interest, the MPIR types mpz_t etc are implemented as one-element arrays of certain struc-
tures. This is why declaring a variable creates an object with the fields MPIR needs, but then

20 MPIR 3.0.0

using it as a parameter passes a pointer to the object. Note that the actual fields in each mpz_t
etc are for internal use only and should not be accessed directly by code that expects to be
compatible with future MPIR releases.

3.7 Memory Management

The MPIR types like mpz_t are small, containing only a couple of sizes, and pointers to allocated
data. Once a variable is initialized, MPIR takes care of all space allocation. Additional space is
allocated whenever a variable doesn’t have enough.

mpz_t and mpq_t variables never reduce their allocated space. Normally this is the best policy,
since it avoids frequent reallocation. Applications that need to return memory to the heap at
some particular point can use mpz_realloc2, or clear variables no longer needed.

mpf _t variables, in the current implementation, use a fixed amount of space, determined by the
chosen precision and allocated at initialization, so their size doesn’t change.

All memory is allocated using malloc and friends by default, but this can be changed, see
Chapter 14 [Custom Allocation], page 106. Temporary memory on the stack is also used (via
alloca), but this can be changed at build-time if desired, see Section 2.1 [Build Options], page 3.

3.8 Reentrancy

MPIR is reentrant and thread-safe, with some exceptions:

e If configured with --enable-alloca=malloc-notreentrant (or with --enable-
alloca=notreentrant when alloca is not available), then naturally MPIR is not
reentrant.

e mpf_set_default_prec and mpf_init use a global variable for the selected precision. mpf _
init2 can be used instead, and in the C++ interface an explicit precision to the mpf_class
constructor.

e mp_set_memory_functions uses global variables to store the selected memory allocation
functions.

e If the memory allocation functions set by a call to mp_set_memory_functions (or malloc
and friends by default) are not reentrant, then MPIR will not be reentrant either.

e If the standard I/O functions such as fwrite are not reentrant then the MPIR I/O functions
using them will not be reentrant either.

e It’s safe for two threads to read from the same MPIR variable simultaneously, but it’s
not safe for one to read while the another might be writing, nor for two threads to write
simultaneously. It’s not safe for two threads to generate a random number from the same
gmp_randstate_t simultaneously, since this involves an update of that variable.

3.9 Useful Macros and Constants

const int mp_bits_per_limb [Global Constant]
The number of bits per limb.

__GNU_MP_VERSION [Macro]
__GNU_MP_VERSION_MINOR [Macro]
__GNU_MP_VERSION_PATCHLEVEL [Macro]

The major and minor GMP version, and patch level, respectively, as integers. For GMP i.j.k,
these numbers will be i, j, and k, respectively. These numbers represent the version of GMP
fully supported by this version of MPIR.

Chapter 3: MPIR Basics 21

__MPIR_VERSION [Macro]
__MPIR_VERSION_MINOR [Macro]
__MPIR_VERSION_PATCHLEVEL [Macro]

The major and minor MPIR version, and patch level, respectively, as integers. For MPIR
i.j.k, these numbers will be i, j, and k, respectively.

const char * const gmp_version [Global Constant]
The GNU MP version number, as a null-terminated string, in the form “i.j.k”.

__GMP_CC [Macro]
__GMP_CFLAGS [Macro]
The compiler and compiler flags, respectively, used when compiling GMP, as strings.

const char * const mpir_version [Global Constant]
The MPIR version number, as a null-terminated string, in the form “i.j.k”. This release is
"3.0.0".

3.10 Compatibility with older versions

This version of MPIR is upwardly binary compatible with all GMP 5.x, 4.x and 3.x versions,
and upwardly compatible at the source level with all 2.x versions, with the following exceptions.

e mpn_gcd had its source arguments swapped as of GMP 3.0, for consistency with other mpn
functions.

e mpf_get_prec counted precision slightly differently in GMP 3.0 and 3.0.1, but in 3.1 re-
verted to the 2.x style.

e mpn_bdivmod provided provisionally in the past has been removed from MPIR 2.7.0.
e MPIR does not support the secure cryptographic functions provided by GMP.

e Full GMP compatibility is only available when the ‘~-enable-gmpcompat’ configure option
is used.

There are a number of compatibility issues between GMP 1 and GMP 2 that of course also
apply when porting applications from GMP 1 to GMP 4 and MPIR 1 and 2. Please see the
GMP 2 manual for details.

3.11 Efficiency

Small Operands
On small operands, the time for function call overheads and memory allocation can
be significant in comparison to actual calculation. This is unavoidable in a general
purpose variable precision library, although MPIR attempts to be as efficient as it
can on both large and small operands.

Static Linking
On some CPUs, in particular the x86s, the static 1ibmpir.a should be used for
maximum speed, since the PIC code in the shared libmpir.so will have a small
overhead on each function call and global data address. For many programs this
will be insignificant, but for long calculations there’s a gain to be had.

Initializing and Clearing
Avoid excessive initializing and clearing of variables, since this can be quite time
consuming, especially in comparison to otherwise fast operations like addition.
A language interpreter might want to keep a free list or stack of initialized variables

ready for use. It should be possible to integrate something like that with a garbage
collector too.

929 MPIR 3.0.0

Reallocations

An mpz_t or mpq_t variable used to hold successively increasing values will have
its memory repeatedly realloced, which could be quite slow or could fragment
memory, depending on the C library. If an application can estimate the final size
then mpz_init2 or mpz_realloc2 can be called to allocate the necessary space from
the beginning (see Section 5.1 [Initializing Integers|, page 29).

It doesn’t matter if a size set with mpz_init2 or mpz_realloc? is too small, since all
functions will do a further reallocation if necessary. Badly overestimating memory
required will waste space though.

2exp Functions
It’s up to an application to call functions like mpz_mul_2exp when appropriate.
General purpose functions like mpz_mul make no attempt to identify powers of two
or other special forms, because such inputs will usually be very rare and testing
every time would be wasteful.

ui and si Functions
The ui functions and the small number of si functions exist for convenience and
should be used where applicable. But if for example an mpz_t contains a value that
fits in an unsigned long (unsigned long long on Windows x64) there’s no need
extract it and call a ui function, just use the regular mpz function.

In-Place Operations
mpz_abs, mpq_abs, mpf_abs, mpz_neg, mpq_neg and mpf_neg are fast when used for
in-place operations like mpz_abs(x,x), since in the current implementation only a
single field of x needs changing. On suitable compilers (GCC for instance) this is
inlined too.

mpz_add_ui, mpz_sub_ui, mpf_add_ui and mpf_sub_ui benefit from an in-place
operation like mpz_add_ui(x,x,y), since usually only one or two limbs of x will
need to be changed. The same applies to the full precision mpz_add etc if y is small.
If y is big then cache locality may be helped, but that’s all.

mpz_mul is currently the opposite, a separate destination is slightly better. A call
like mpz_mul (x,x,y) will, unless y is only one limb, make a temporary copy of x
before forming the result. Normally that copying will only be a tiny fraction of the
time for the multiply, so this is not a particularly important consideration.

mpz_set, mpq_set, mpq_set_num, mpf_set, etc, make no attempt to recognise a
copy of something to itself, so a call like mpz_set (x,x) will be wasteful. Naturally
that would never be written deliberately, but if it might arise from two pointers to
the same object then a test to avoid it might be desirable.
if (x '=y)
mpz_set (x, y);

Note that it’s never worth introducing extra mpz_set calls just to get in-place op-
erations. If a result should go to a particular variable then just direct it there and
let MPIR take care of data movement.

Divisibility Testing (Small Integers)
mpz_divisible_ui_p and mpz_congruent_ui_p are the best functions for testing
whether an mpz_t is divisible by an individual small integer. They use an algorithm
which is faster than mpz_tdiv_ui, but which gives no useful information about the
actual remainder, only whether it’s zero (or a particular value).

However when testing divisibility by several small integers, it’s best to take a re-
mainder modulo their product, to save multi-precision operations. For instance to
test whether a number is divisible by any of 23, 29 or 31 take a remainder modulo
23 x 29 x 31 = 20677 and then test that.

Chapter 3: MPIR Basics 23

The division functions like mpz_tdiv_q_ui which give a quotient as well as a re-
mainder are generally a little slower than the remainder-only functions like mpz_
tdiv_ui. If the quotient is only rarely wanted then it’s probably best to just take
a remainder and then go back and calculate the quotient if and when it’s wanted
(mpz_divexact_ui can be used if the remainder is zero).

Rational Arithmetic
The mpq functions operate on mpg_t values with no common factors in the numerator
and denominator. Common factors are checked-for and cast out as necessary. In
general, cancelling factors every time is the best approach since it minimizes the
sizes for subsequent operations.

However, applications that know something about the factorization of the values
they’re working with might be able to avoid some of the GCDs used for canonical-
ization, or swap them for divisions. For example when multiplying by a prime it’s
enough to check for factors of it in the denominator instead of doing a full GCD.
Or when forming a big product it might be known that very little cancellation will
be possible, and so canonicalization can be left to the end.

The mpq_numref and mpq_denref macros give access to the numerator and denom-
inator to do things outside the scope of the supplied mpq functions. See Section 6.5
[Applying Integer Functions|, page 48.

The canonical form for rationals allows mixed-type mpq_t and integer additions or
subtractions to be done directly with multiples of the denominator. This will be
somewhat faster than mpq_add. For example,

/* mpq increment */
mpz_add (mpq_numref(q), mpq_numref(q), mpq_denref(q));

/* mpq += unsigned long */
mpz_addmul_ui (mpq_numref(q), mpq_denref(q), 123UL);

/* mpq -= mpz */
mpz_submul (mpq_numref(q), mpq_denref(q), z);

Number Sequences
Functions like mpz_fac_ui, mpz_fib_ui and mpz_bin_uiui are designed for calcu-
lating isolated values. If a range of values is wanted it’s probably best to call to get
a starting point and iterate from there.

Text Input/Output
Hexadecimal or octal are suggested for input or output in text form. Power-of-
2 bases like these can be converted much more efficiently than other bases, like
decimal. For big numbers there’s usually nothing of particular interest to be seen
in the digits, so the base doesn’t matter much.

Maybe we can hope octal will one day become the normal base for everyday use, as
proposed by King Charles XII of Sweden and later reformers.

3.12 Debugging

Stack Overflow
Depending on the system, a segmentation violation or bus error might be the only
indication of stack overflow. See ‘--enable-alloca’ choices in Section 2.1 [Build
Options], page 3, for how to address this.

In new enough versions of GCC, ‘-fstack-check’ may be able to ensure
an overflow is recognised by the system before too much damage is done, or

94 MPIR 3.0.0

‘~fstack-limit-symbol’ or ‘-fstack-limit-register’ may be able to add
checking if the system itself doesn’t do any (see Section “Options for Code
Generation” in Using the GNU Compiler Collection (GCC)). These options must
be added to the ‘CFLAGS’ used in the MPIR build (see Section 2.1 [Build Options],
page 3), adding them just to an application will have no effect. Note also they’re a
slowdown, adding overhead to each function call and each stack allocation.

Heap Problems
The most likely cause of application problems with MPIR, is heap corruption. Fail-
ing to init MPIR variables will have unpredictable effects, and corruption arising
elsewhere in a program may well affect MPIR. Initializing MPIR variables more
than once or failing to clear them will cause memory leaks.

In all such cases a malloc debugger is recommended. On a GNU or BSD system
the standard C library malloc has some diagnostic facilities, see Section “Allocation
Debugging” in The GNU C Library Reference Manual, or ‘man 3 malloc’. Other
possibilities, in no particular order, include

http://dmalloc.com/
http://www.perens.com/FreeSoftware/ (electric fence)
http://wwuw.gnupdate.org/components/leakbug/
http://wwww.gnome.org/projects/memprof
The MPIR default allocation routines in memory . c also have a simple sentinel scheme
which can be enabled with #define DEBUG in that file. This is mainly designed for
detecting buffer overruns during MPIR development, but might find other uses.

Stack Backtraces
On some systems the compiler options MPIR uses by default can interfere with
debugging. In particular on x86 and 68k systems ‘~fomit-frame-pointer’ is used
and this generally inhibits stack backtracing. Recompiling without such options
may help while debugging, though the usual caveats about it potentially moving a
memory problem or hiding a compiler bug will apply.

GDB, the GNU Debugger
A sample .gdbinit is included in the distribution, showing how to call some undocu-
mented dump functions to print MPIR variables from within GDB. Note that these
functions shouldn’t be used in final application code since they’re undocumented
and may be subject to incompatible changes in future versions of MPIR.

Source File Paths

MPIR has multiple source files with the same name, in different directories. For
example mpz, mpq and mpf each have an init.c. If the debugger can’t already
determine the right one it may help to build with absolute paths on each C file.
One way to do that is to use a separate object directory with an absolute path to
the source directory.

cd /my/build/dir

/my/source/dir/gmp-3.0.0/configure
This works via VPATH, and might require GNU make. Alternately it might be possible
to change the .c.lo rules appropriately.

Assertion Checking
The build option --enable-assert is available to add some consistency checks to
the library (see Section 2.1 [Build Options|, page 3). These are likely to be of limited
value to most applications. Assertion failures are just as likely to indicate memory
corruption as a library or compiler bug.

Applications using the low-level mpn functions, however, will benefit from --enable-
assert since it adds checks on the parameters of most such functions, many of which

http://dmalloc.com/
http://www.perens.com/FreeSoftware/
http://www.gnupdate.org/components/leakbug/
http://wwww.gnome.org/projects/memprof

Chapter 3: MPIR Basics 25

have subtle restrictions on their usage. Note however that only the generic C code
has checks, not the assembler code, so CPU ‘none’ should be used for maximum
checking.

Temporary Memory Checking

The build option --enable-alloca=debug arranges that each block of temporary
memory in MPIR is allocated with a separate call to malloc (or the allocation
function set with mp_set_memory_functions).

This can help a malloc debugger detect accesses outside the intended bounds, or
detect memory not released. In a normal build, on the other hand, temporary
memory is allocated in blocks which MPIR divides up for its own use, or may be
allocated with a compiler builtin alloca which will go nowhere near any malloc
debugger hooks.

Maximum Debuggability

Checker

Valgrind

To summarize the above, an MPIR build for maximum debuggability would be

./configure --disable-shared --enable-assert \
--enable-alloca=debug --host=none CFLAGS=-g

For C++, add ‘--enable-cxx CXXFLAGS=-g’.

The GCC checker (http://savannah.gnu.org/projects/checker/) can be used
with MPIR. It contains a stub library which means MPIR applications compiled
with checker can use a normal MPIR build.

A build of MPIR with checking within MPIR itself can be made. This will run very
very slowly. On GNU/Linux for example,

./configure --host=none-pc-linux-gnu CC=checkergcc

‘--host=none’ must be used, since the MPIR assembler code doesn’t support the
checking scheme. The MPIR C++ features cannot be used, since current versions of
checker (0.9.9.1) don’t yet support the standard C++ library.

The valgrind program (http://valgrind.org/) is a memory checker for x86s. It
translates and emulates machine instructions to do strong checks for uninitialized
data (at the level of individual bits), memory accesses through bad pointers, and
memory leaks.

Recent versions of Valgrind are getting support for MMX and SSE/SSE2 instruc-
tions, for past versions MPIR will need to be configured not to use those, ie. for an
x86 without them (for instance plain ‘1486’).

Other Problems

Any suspected bug in MPIR itself should be isolated to make sure it’s not an appli-
cation problem, see Chapter 4 [Reporting Bugs|, page 28.

3.13 Profiling

Running a program under a profiler is a good way to find where it’s spending most time and
where improvements can be best sought. The profiling choices for a MPIR build are as follows.

‘-—disable-profiling’

The default is to add nothing special for profiling.

It should be possible to just compile the mainline of a program with -p and use prof
to get a profile consisting of timer-based sampling of the program counter. Most of
the MPIR assembler code has the necessary symbol information.

This approach has the advantage of minimizing interference with normal program
operation, but on most systems the resolution of the sampling is quite low (10
milliseconds for instance), requiring long runs to get accurate information.

http://savannah.gnu.org/projects/checker/
http://valgrind.org/

26 MPIR 3.0.0

‘-—enable-profiling=prof’
Build with support for the system prof, which means ‘-p’ added to the ‘CFLAGS’.

This provides call counting in addition to program counter sampling, which allows
the most frequently called routines to be identified, and an average time spent in
each routine to be determined.

The x86 assembler code has support for this option, but on other processors the
assembler routines will be as if compiled without ‘-p’ and therefore won’t appear in
the call counts.

On some systems, such as GNU/Linux, ‘-p’ in fact means ‘-pg’ and in this case
‘-—enable-profiling=gprof’ described below should be used instead.

‘-—enable-profiling=gprof’
Build with support for gprof (see GNU gprof), which means ‘-pg’ added to the
‘CFLAGS’.

This provides call graph construction in addition to call counting and program
counter sampling, which makes it possible to count calls coming from different loca-
tions. For example the number of calls to mpn_mul from mpz_mul versus the number
from mpf_mul. The program counter sampling is still flat though, so only a total
time in mpn_mul would be accumulated, not a separate amount for each call site.

The x86 assembler code has support for this option, but on other processors the
assembler routines will be as if compiled without ‘~pg’ and therefore not be included
in the call counts.

On x86 and m68k systems ‘-pg’ and ‘-fomit-frame-pointer’ are incompatible, so
the latter is omitted from the default flags in that case, which might result in poorer
code generation.

Incidentally, it should be possible to use the gprof program with a plain
‘-—enable-profiling=prof’ build. But in that case only the ‘gprof -p’ flat profile
and call counts can be expected to be valid, not the ‘gprof -q’ call graph.

‘-—enable-profiling=instrument’
Build with the GCC option ‘~finstrument-functions’ added to the ‘CFLAGS’ (see
Section “Options for Code Generation” in Using the GNU Compiler Collection
(GCQ)).

This inserts special instrumenting calls at the start and end of each function, allowing
exact timing and full call graph construction.

This instrumenting is not normally a standard system feature and will require sup-
port from an external library, such as

http://sourceforge.net/projects/fnccheck/

This should be included in ‘LIBS’ during the MPIR configure so that test programs
will link. For example,

./configure --enable-profiling=instrument LIBS=-1fc

On a GNU system the C library provides dummy instrumenting functions, so pro-
grams compiled with this option will link. In this case it’s only necessary to ensure
the correct library is added when linking an application.

The x86 assembler code supports this option, but on other processors the assembler
routines will be as if compiled without ‘~finstrument-functions’ meaning time
spent in them will effectively be attributed to their caller.

http://sourceforge.net/projects/fnccheck/

Chapter 3: MPIR Basics 27

3.14 Autoconf

Autoconf based applications can easily check whether MPIR is installed. The only thing to
be noted is that GMP/MPIR library symbols from version 3 of GMP and version 1 of MPIR
onwards have prefixes like __gmpz. The following therefore would be a simple test,

AC_CHECK_LIB(mpir, __gmpz_init)

This just uses the default AC_CHECK_LIB actions for found or not found, but an application that
must have MPIR would want to generate an error if not found. For example,

AC_CHECK_LIB(mpir, __gmpz_init, ,
[AC_MSG_ERROR([MPIR not found, see http://www.mpir.org/])])

If functions added in some particular version of GMP/MPIR are required, then one of those can
be used when checking. For example mpz_mul_si was added in GMP 3.1,

AC_CHECK_LIB(mpir, __gmpz_mul_si, |,
[AC_MSG_ERROR(
[GMP/MPIR not found, or not GMP 3.1 or up or MPIR 1.0 or up, see http://www.mpir.org,

An alternative would be to test the version number in mpir.h using say AC_EGREP_CPP. That
would make it possible to test the exact version, if some particular sub-minor release is known
to be necessary.

In general it’s recommended that applications should simply demand a new enough MPIR rather
than trying to provide supplements for features not available in past versions.

Occasionally an application will need or want to know the size of a type at configuration or
preprocessing time, not just with sizeof in the code. This can be done in the normal way
with mp_limb_t etc, but GMP 4.0 or up and MPIR 1.0 and up is best for this, since prior
versions needed certain ‘-D’ defines on systems using a long long limb. The following would
suit Autoconf 2.50 or up,

AC_CHECK_SIZEOF (mp_limb_t, , [#include <mpir.h>])

3.15 Emacs

C-h C-i (info-lookup-symbol) is a good way to find documentation on C functions while
editing (see Section “Info Documentation Lookup” in The Emacs Editor).

The MPIR manual can be included in such lookups by putting the following in your .emacs,

(eval-after-load "info-look"
’(let ((mode-value (assoc ’c-mode (assoc ’symbol info-lookup-alist))))
(setcar (nthcdr 3 mode-value)
(cons ’("(gmp)Function Index" nil "~ —.%x " "\\>")
(nth 3 mode-value)))))

28 MPIR 3.0.0

4 Reporting Bugs

If you think you have found a bug in the MPIR library, please investigate it and report it. We
have made this library available to you, and it is not too much to ask you to report the bugs
you find.

Before you report a bug, check it’s not already addressed in Section 2.6 [Known Build Problems],
page 14, or perhaps Section 2.5 [Notes for Particular Systems]|, page 13. You may also want to
check http://www.mpir.org/ for patches for this release.

Please include the following in any report,

e The MPIR version number, and if pre-packaged or patched then say so.

e A test program that makes it possible for us to reproduce the bug. Include instructions on
how to run the program.

e A description of what is wrong. If the results are incorrect, in what way. If you get a crash,
say so.

e If you get a crash, include a stack backtrace from the debugger if it’s informative (‘where’
in gdb, or ‘$C’ in adb).

e Please do not send core dumps, executables or straces.

e The configuration options you used when building MPIR, if any.

e The name of the compiler and its version. For gcc, get the version with ‘gcc -v’, otherwise
perhaps ‘what ‘which cc®’, or similar.

e The output from running ‘uname -a’.

e The output from running ‘./config.guess’, and from running ‘./configfsf.guess’
(might be the same).

e If the bug is related to ‘configure’, then the contents of config.log.

e If the bug is related to an asm file not assembling, then the contents of config.m4 and the
offending line or lines from the temporary mpn/tmp-<file>.s.

Please make an effort to produce a self-contained report, with something definite that can be
tested or debugged. Vague queries or piecemeal messages are difficult to act on and don’t help
the development effort.

It is not uncommon that an observed problem is actually due to a bug in the compiler; the
MPIR code tends to explore interesting corners in compilers.

If your bug report is good, we will do our best to help you get a corrected version of the library;
if the bug report is poor, we won’t do anything about it (except maybe ask you to send a better
report).

Send your report to: http://groups.google.com/group/mpir-devel.

If you think something in this manual is unclear, or downright incorrect, or if the language needs
to be improved, please send a note to the same address.

http://www.mpir.org/
http://groups.google.com/group/mpir-devel

Chapter 5: Integer Functions 29

5 Integer Functions

This chapter describes the MPIR functions for performing integer arithmetic. These functions
start with the prefix mpz_.

MPIR integers are stored in objects of type mpz_t.

5.1 Initialization Functions

The functions for integer arithmetic assume that all integer objects are initialized. You do that
by calling the function mpz_init. For example,

{
mpz_t integ;
mpz_init (integ);

mpz_add (integ, ...);

mpz_sub (integ, ...);

/* Unless the program is about to exit, do ... */
mpz_clear (integ) ;

¥

As you can see, you can store new values any number of times, once an object is initialized.

void mpz_init (mpz_t integer) [Function]
Initialize integer, and set its value to 0.

void mpz_inits (mpz.t x, ...) [Function]
Initialize a NULL-terminated list of mpz_t variables, and set their values to 0.

void mpz_init2 (mpz-t integer, mp_bitcnt_t n) [Function]
Initialize integer, with space for n bits, and set its value to 0.

n is only the initial space, integer will grow automatically in the normal way, if necessary,
for subsequent values stored. mpz_init2 makes it possible to avoid such reallocations if a
maximum size is known in advance.

void mpz_clear (mpz_t integer) [Function]
Free the space occupied by integer. Call this function for all mpz_t variables when you are
done with them.

void mpz_clears (mpz.t X, ...) [Function]
Free the space occupied by a NULL-terminated list of mpz_t variables.

void mpz_realloc2 (mpz_t integer, mp_bitcnt_t n) [Function]
Change the space allocated for integer to n bits. The value in integer is preserved if it fits,
or is set to 0 if not.

This function can be used to increase the space for a variable in order to avoid repeated
automatic reallocations, or to decrease it to give memory back to the heap.

30 MPIR 3.0.0

5.2 Assignment Functions

These functions assign new values to already initialized integers (see Section 5.1 [Initializing
Integers|, page 29).

void mpz_set (mpz_t rop, mpz_t op) Function
void mpz_set_ui (mpz_-t rop, mpir_ui op) Function
void mpz_set_si (mpz.-t rop, mpir_si op) Function

void mpz_set_sx (mpz.-t rop, intmax_t op) Function
void mpz_set_d (mpz_t rop, double op) Function
void mpz_set_q (mpz_t rop, mpq_t op) Function

[}

Funcion)

void mpz_set_ux (mpz.-t rop, uintmax_t op) {Function%
[}

[}

}

void mpz_set_f (mpz_t rop, mpf_t op) [Function
Set the value of rop from op. Note the intmax versions are only available if you include the
stdint.h header before including mpir.h.

mpz_set_d, mpz_set_q and mpz_set_f truncate op to make it an integer.

int mpz_set_str (mpz_t rop, char *str, int base) [Function]
Set the value of rop from str, a null-terminated C string in base base. White space is allowed
in the string, and is simply ignored.

The base may vary from 2 to 62, or if base is 0, then the leading characters are used: 0x and
0X for hexadecimal, Ob and OB for binary, O for octal, or decimal otherwise.

For bases up to 36, case is ignored; upper-case and lower-case letters have the same value. For
bases 37 to 62, upper-case letter represent the usual 10..35 while lower-case letter represent
36..61.

This function returns 0 if the entire string is a valid number in base base. Otherwise it returns

—1.

void mpz_swap (mpz-t ropl, mpz_t rop2) [Function]
Swap the values ropl and rop2 efficiently.

5.3 Combined Initialization and Assignment Functions

For convenience, MPIR provides a parallel series of initialize-and-set functions which initialize
the output and then store the value there. These functions’ names have the form mpz_init_
set...

Here is an example of using one:

{
mpz_t pie;
mpz_init_set_str (pie, "3141592653589793238462643383279502884", 10);
mpz_sub (pie, ...);
mpz_clear (pie);
}
Once the integer has been initialized by any of the mpz_init_set... functions, it can be used

as the source or destination operand for the ordinary integer functions. Don’t use an initialize-
and-set function on a variable already initialized!

Chapter 5: Integer Functions 31

void mpz_init_set (mpz_t rop, mpz_t op) [Function
void mpz_init_set_ui (mpz.-t rop, mpir_ui op) [Function
void mpz_init_set_si (mpz_t rop, mpir_si op) [Function
void mpz_init_set_ux (mpz_t rop, uintmax_t op) [Function
void mpz_init_set_sx (mpz.-t rop, intmax_t op) [Function
void mpz_init_set_d (mpz_t rop, double op) [Function
Initialize rop with limb space and set the initial numeric value from op. Note the intmax
versions are only available if you include the stdint.h header before including mpir.h.

int mpz_init_set_str (mpz_t rop, char *str, int base) [Function]
Initialize rop and set its value like mpz_set_str (see its documentation above for details).

If the string is a correct base base number, the function returns 0; if an error occurs it returns
—1. rop is initialized even if an error occurs. (IL.e., you have to call mpz_clear for it.)

5.4 Conversion Functions

This section describes functions for converting MPIR integers to standard C types. Functions
for converting to MPIR integers are described in Section 5.2 [Assigning Integers|, page 30 and
Section 5.12 [I/O of Integers|, page 40.

mpir_ui mpz_get_ui (mpz_t op) [Function]
Return the value of op as an mpir_ui.

If op is too big to fit an mpir_ui then just the least significant bits that do fit are returned.
The sign of op is ignored, only the absolute value is used.

mpir_si mpz_get_si (mpz_t op) [Function]
If op fits into a mpir_si return the value of op. Otherwise return the least significant part
of op, with the same sign as op.

If op is too big to fit in a mpir_si, the returned result is probably not very useful. To find
out if the value will fit, use the function mpz_fits_slong_p.

uintmax_t mpz_get_ux (mpz_t op) [Function]
Return the value of op as an uintmax_t.

If op is too big to fit an uintmax_t then just the least significant bits that do fit are returned.
The sign of op is ignored, only the absolute value is used. Note this function is only available
if you include stdint.h before including mpir.h.

intmax_t mpz_get_sx (mpz_t op) [Function]
If op fits into a intmax_t return the value of op. Otherwise return the least significant part
of op, with the same sign as op.

If op is too big to fit in a intmax_t, the returned result is probably not very useful. Note
this function is only available if you include the stdint.h header before including mpir.h.

double mpz_get_d (mpz_t op) [Function]
Convert op to a double, truncating if necessary (ie. rounding towards zero).

If the exponent from the conversion is too big, the result is system dependent. An infinity is
returned where available. A hardware overflow trap may or may not occur.

392 MPIR 3.0.0

double mpz_get_d_2exp (mpir_si *exp, mpz_t op) [Function]
Convert op to a double, truncating if necessary (ie. rounding towards zero), and returning
the exponent separately.

The return value is in the range 0.5 < |d| < 1 and the exponent is stored to *exp. d *2°"? is
the (truncated) op value. If op is zero, the return is 0.0 and 0 is stored to *exp.

This is similar to the standard C frexp function (see Section “Normalization Functions” in

The GNU C Library Reference Manual).

char * mpz_get_str (char *str, int base, mpz_t op) [Function]
Convert op to a string of digits in base base. The base may vary from 2 to 36 or from —2 to
—36.

For base in the range 2..36, digits and lower-case letters are used; for —2..—36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

If str is NULL, the result string is allocated using the current allocation function (see
Chapter 14 [Custom Allocation], page 106). The block will be strlen(str)+1 bytes, that
being exactly enough for the string and null-terminator.

If str is not NULL, it should point to a block of storage large enough for the result, that being
mpz_sizeinbase (op, base) + 2. The two extra bytes are for a possible minus sign, and the
null-terminator.

A pointer to the result string is returned, being either the allocated block, or the given str.

5.5 Arithmetic Functions

void mpz_add (mpz_t rop, mpz_t opl, mpz_t op2) [Function]
void mpz_add_ui (mpz-t rop, mpz_t opl, mpir_ui op2) [Function]
Set rop to opl + op2.

void mpz_sub (mpz_t rop, mpz_t opl, mpz_t op2) [Function]
void mpz_sub_ui (mpz-t rop, mpz_t opl, mpir_ui op2) [Function]
void mpz_ui_sub (mpz_-t rop, mpir_ui opl, mpz_t op2) [Function]

Set rop to opl — op2.

void mpz_mul (mpz_t rop, mpz_t opl, mpz_t op2) [Function]
void mpz_mul_si (mpz.-t rop, mpz_t opl, mpir_si op2) [Function]
void mpz_mul_ui (mpz_-t rop, mpz_t opl, mpir_ui op2) [Function]

Set rop to opl x op2.

void mpz_addmul (mpz.-t rop, mpz_t opl, mpz_t op2) [Function]
void mpz_addmul_ui (mpz_t rop, mpz_t opl, mpir_ui op2) [Function]
Set rop to rop + opl x op2.

void mpz_submul (mpz.-t rop, mpz_t opl, mpz_t op2) [Function]
void mpz_submul_ui (mpz_t rop, mpz_t opl, mpir_ui op2) [Function]
Set rop to rop — opl x op2.

void mpz_mul_2exp (mpz_t rop, mpz_t opl, mp_bitcnt_t op2) [Function]
Set rop to opl x 2°P2. This operation can also be defined as a left shift by op2 bits.

Chapter 5: Integer Functions 33

void mpz_neg (mpz_t rop, mpz_t op) [Function]
Set rop to —op.

void mpz_abs (mpz_t rop, mpz_t op) [Function]
Set rop to the absolute value of op.

5.6 Division Functions

Division is undefined if the divisor is zero. Passing a zero divisor to the division or modulo
functions (including the modular powering functions mpz_powm and mpz_powm_ui), will cause an
intentional division by zero. This lets a program handle arithmetic exceptions in these functions
the same way as for normal C int arithmetic.

void mpz_cdiv_q (mpz-t q, mpz_t n, mpz_t d) Function
void mpz_cdiv_r (mpz.-t r, mpz_t n, mpz_t d) Function
void mpz_cdiv_qr (mpz.-t q, mpz_t r, mpz_t n, mpz_t d) Function
mpir_ui mpz_cdiv_q_ui (mpz.t q, mpz_t n, mpir_ui d) Function
mpir_ui mpz_cdiv_r_ui (mpz.t r, mpz_t n, mpir_ui d) Function
mpir_ui mpz_cdiv_qr_ui (mpz.-t q, mpz_t r, mpz_t n, mpir_ui d) Function
mpir_ui mpz_cdiv_ui (mpz_t n, mpir_ui d) Function
void mpz_cdiv_q_2exp (mpz_-t q, mpz_t n, mp_bitcnt_t b) Function
void mpz_cdiv_r_2exp (mpz-t r, mpz_-t n, mp_bitcnt_t b) Function
void mpz_fdiv_q (mpz-t q, mpz_t n, mpz_t d) Function
void mpz_fdiv_r (mpz_-t r, mpz_t n, mpz_t d) Function
void mpz_fdiv_qr (mpz.-t q, mpz_t r, mpz_t n, mpz_t d) Function
mpir_ui mpz_fdiv_q_ui (mpz-t q, mpz_t n, mpir_ui d) Function

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
Funcion
mpir_ui mpz_fdiv_r_ui (mpz.t r, mpz_t n, mpir_ui d) F;\U.HC'EIOII%
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

mpir_ui mpz_fdiv_qr_ui (mpz.-t q, mpz_t r, mpz_t n, mpir_ui d) Function
mpir_ui mpz_fdiv_ui (mpz_t n, mpir_ui d) Function
void mpz_fdiv_q_2exp (mpz_-t q, mpz_t n, mp_bitcnt_t b) Function
void mpz_fdiv_r_2exp (mpz.t r, mpz_t n, mp_bitcnt_t b) Function
void mpz_tdiv_q (mpz-t q, mpz_t n, mpz_t d) Function
void mpz_tdiv_r (mpz.-t r, mpz_t n, mpz_t d) Function
void mpz_tdiv_qr (mpz-t q, mpz_t r, mpz_t n, mpz_t d) Function
mpir_ui mpz_tdiv_q_ui (mpz.t q, mpz_t n, mpir_ui d) Function
mpir_ui mpz_tdiv_r_ui (mpz.t r, mpz_t n, mpir_ui d) Function
mpir_ui mpz_tdiv_qr_ui (mpz.-t q, mpz_t r, mpz_t n, mpir_ui d) Function
mpir_ui mpz_tdiv_ui (mpz_t n, mpir_ui d) Function
void mpz_tdiv_q_2exp (mpz_-t q, mpz_t n, mp_bitcnt_t b) Function
void mpz_tdiv_r_2exp (mpz.t r, mpz_t n, mp_bitcnt_t b) Function

Divide n by d, forming a quotient g and/or remainder r. For the 2exp functions, d = 2°. The
rounding is in three styles, each suiting different applications.

e cdiv rounds q up towards 400, and r will have the opposite sign to d. The ¢ stands for
“ceil”.

e fdiv rounds q down towards —oo, and r will have the same sign as d. The f stands for
“floor”.

e tdiv rounds g towards zero, and r will have the same sign as n. The t stands for
“truncate”.

In all cases q and r will satisfy n = qd + r, and r will satisfy 0 < |r| < |d]|.

34 MPIR 3.0.0

The q functions calculate only the quotient, the r functions only the remainder, and the qr
functions calculate both. Note that for qr the same variable cannot be passed for both q and
r, or results will be unpredictable.

For the ui variants the return value is the remainder, and in fact returning the remainder is
all the div_ui functions do. For tdiv and cdiv the remainder can be negative, so for those
the return value is the absolute value of the remainder.

For the 2exp variants the divisor is 2°. These functions are implemented as right shifts and
bit masks, but of course they round the same as the other functions.

For positive n both mpz_fdiv_q_2exp and mpz_tdiv_q_2exp are simple bitwise right shifts.
For negative n, mpz_fdiv_q_2exp is effectively an arithmetic right shift treating n as twos
complement the same as the bitwise logical functions do, whereas mpz_tdiv_q_2exp effec-
tively treats n as sign and magnitude.

void mpz_mod (mpz_t r, mpz_t n, mpz_t d) [Function]
mpir_ui mpz_mod_ui (mpz_t r, mpz_t n, mpir_ui d) [Function]
Set r to n mod d. The sign of the divisor is ignored; the result is always non-negative.

mpz_mod_ui is identical to mpz_fdiv_r_ui above, returning the remainder as well as setting
r. See mpz_fdiv_ui above if only the return value is wanted.

void mpz_divexact (mpz-t q, mpz_t n, mpz_t d) [Function]

void mpz_divexact_ui (mpz-t q, mpz_t n, mpir_ui d) [Function]
Set q to n/d. These functions produce correct results only when it is known in advance that
d divides n.

These routines are much faster than the other division functions, and are the best choice
when exact division is known to occur, for example reducing a rational to lowest terms.

int mpz_divisible_p (mpz_t n, mpz_t d) [Function]
int mpz_divisible_ui_p (mpz-t n, mpir_ui d) [Function]
int mpz_divisible_2exp_p (mpz-t n, mp_bitcnt_t b) [Function]

Return non-zero if n is exactly divisible by d, or in the case of mpz_divisible_2exp_p by 2°.

n is divisible by d if there exists an integer q satisfying n = gqd. Unlike the other division
functions, d = 0 is accepted and following the rule it can be seen that only 0 is considered

divisible by 0.

int mpz_congruent_p (mpz_t n, mpz_t ¢, mpz_t d) [Function]
int mpz_congruent_ui_p (mpz-t n, mpir_ui ¢, mpir_ui d) [Function]
int mpz_congruent_2exp_p (mpz_t n, mpz_t ¢, mp_bitcnt_t b) [Function]

Return non-zero if n is congruent to ¢ modulo d, or in the case of mpz_congruent_2exp_p
modulo 2°.

n is congruent to ¢ mod d if there exists an integer q satisfying n = ¢ 4+ qd. Unlike the other
division functions, d = 0 is accepted and following the rule it can be seen that n and ¢ are
considered congruent mod 0 only when exactly equal.

Chapter 5: Integer Functions 35

5.7 Exponentiation Functions

void mpz_powm (mpz_t rop, mpz_t base, mpz_t exp, mpz_t mod) [Function]
void mpz_powm_ui (mpz_t rop, mpz_t base, mpir_ui exp, mpz_t mod) [Function]
Set rop to base®*? mod mod.

A negative exp is supported in mpz_powm if an inverse base™' mod mod exists (see mpz_
invert in Section 5.9 [Number Theoretic Functions|, page 36). If an inverse doesn’t exist
then a divide by zero is raised.

void mpz_pow_ui (mpz-t rop, mpz_t base, mpir_ui exp) [Function]
void mpz_ui_pow_ui (mpz-t rop, mpir_-ui base, mpir_ui exp) [Function]
Set rop to base®?. The case 0° yields 1.

5.8 Root Extraction Functions

int mpz_root (mpz-t rop, mpz-t op, mpir_ui n) [Function]
Set rop to | ¢/op], the truncated integer part of the nth root of op. Return non-zero if the
computation was exact, i.e., if op is rop to the nth power.

void mpz_nthroot (mpz.-t rop, mpz_t op, mpir_ui n) [Function]
Set rop to | ¢/op], the truncated integer part of the nth root of op.

void mpz_rootrem (mpz.t root, mpz_t rem, mpz_t u, mpir_ui n) [Function]
Set root to | {/u], the truncated integer part of the nth root of u. Set rem to the remainder,
(u — root™).

void mpz_sqrt (mpz-t rop, mpz_t op) [Function]
Set rop to |\/op|, the truncated integer part of the square root of op.

void mpz_sqrtrem (mpz.t ropl, mpz_t rop2, mpz_t op) [Function]
Set ropl to |,/op], like mpz_sqrt. Set rop2 to the remainder (op — rop1?), which will be
zero if op is a perfect square.

If ropl and rop2 are the same variable, the results are undefined.

int mpz_perfect_power_p (mpz_t op) [Function]
Return non-zero if op is a perfect power, i.e., if there exist integers a and b, with b > 1, such
that op = a’.

Under this definition both 0 and 1 are considered to be perfect powers. Negative values of
op are accepted, but of course can only be odd perfect powers.

int mpz_perfect_square_p (mpz_t op) [Function]
Return non-zero if op is a perfect square, i.e., if the square root of op is an integer. Under
this definition both 0 and 1 are considered to be perfect squares.

36

MPIR 3.0.0

5.9 Number Theoretic Functions

int mpz_probable_prime_p (mpz_t n, gmp_randstate_t state, int prob, [Function]

mpir_ui div)
Determine whether n is a probable prime with the chance of error being at most 1 in 2" prob.
return value is 1 if n is probably prime, or 0 if n is definitely composite.

This function does some trial divisions to speed up the average case, then some probabilistic
primality tests to achieve the desired level of error.

div can be used to inform the function that trial division up to div has already been performed
on n and so n has NO divisors <= div.Use 0 to inform the function that no trial division has
been done.

This function interface is preliminary and may change in the future.

int mpz_likely_prime_p (mpz-t n, gmp_randstate_t state, mpir_ui div) [Function]

Determine whether n is likely a prime, i.e. you can consider it a prime for practical purposes.
return value is 1 if n can be considered prime, or 0 if n is definitely composite.

This function does some trial divisions to speed up the average case, then some probabilistic
primality tests. The term “likely” refers to the fact that the number will not have small
factors.

div can be used to inform the function that trial division up to div has already been performed
on n and so n has NO divisors <= div

This function interface is preliminary and may change in the future.

int mpz_probab_prime_p (mpz-t n, int reps) [Function]

Determine whether n is prime. Return 2 if n is definitely prime, return 1 if n is probably
prime (without being certain), or return 0 if n is definitely composite.

This function does some trial divisions, then some Miller-Rabin probabilistic primality tests.
reps controls how many such tests are done, 5 to 10 is a reasonable number, more will reduce
the chances of a composite being returned as “probably prime”.

Miller-Rabin and similar tests can be more properly called compositeness tests. Numbers
which fail are known to be composite but those which pass might be prime or might be
composite. Only a few composites pass, hence those which pass are considered probably
prime.

This function is obsolete. It will disappear from future MPIR releases.

void mpz_nextprime (mpz-t rop, mpz-t op) [Function]

Set rop to the next prime greater than op.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s
adequate, the chance of a composite passing will be extremely small. However, despite the
name, it does not guarantee primality.

This function is obsolete. It will disappear from future MPIR releases.

Chapter 5: Integer Functions 37

void mpz_next_prime_candidate (mpz_t rop, mpz_t op, gmp_randstate_t [Function]
state)
Set rop to the next candidate prime greater than op. Note that this function will occasionally
return composites. It is designed to give a quick method for generating numbers which do
not have small prime factors (less than 1000) and which pass a small number of rounds of
Miller-Rabin (just two rounds).The test is designed for speed, assuming that a high quality
followup test can then be run to ensure primality.

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization|, page 67) before invoking this function.

void mpz_gcd (mpz_t rop, mpz_t opl, mpz_t op2) [Function]
Set rop to the greatest common divisor of opl and op2. The result is always positive even if
one or both input operands are negative.

mpir_ui mpz_gcd_ui (mpz-t rop, mpz_t opl, mpir_ui op2) [Function]
Compute the greatest common divisor of opl and op2. If rop is not NULL, store the result
there.

If the result is small enough to fit in an mpir_ui, it is returned. If the result does not fit, 0
is returned, and the result is equal to the argument opl. Note that the result will always fit
if op2 is non-zero.

void mpz_gcdext (mpz-t g, mpz_t s, mpz_t t, const mpz_t a, const mpz_t b) [Function]
Set g to the greatest common divisor of a and b, and in addition set s and t to coefficients
satisfying as + bt = g. The value in g is always positive, even if one or both of a and b
are negative (or zero if both inputs are zero). The values in s and t are chosen such that
normally, |s| < |b|/(2g) and |t| < |a|/(2g), and these relations define s and t uniquely. There
are a few exceptional cases:

If |a| = |b|, then s =0, t = sgn(b).
Otherwise, s = sgn(a) if b= 0 or |b| = 2g, and t = sgn(b) if a =0 or |a| = 2g.
In all cases, s = 0 if and only if g = |b|, i.e., if b divides a or a= b = 0.

If ¢t is NULL then that value is not computed.

void mpz_lcm (mpz-t rop, mpz_t opl, mpz_t op2) [Function]

void mpz_lcm_ui (mpz-t rop, mpz_t opl, mpir_ui op2) [Function]
Set rop to the least common multiple of opl and op2. rop is always positive, irrespective of
the signs of opl and op2. rop will be zero if either opl or op2 is zero.

int mpz_invert (mpz_t rop, mpz_t opl, mpz_t op2) [Function]
Compute the inverse of opl modulo op2 and put the result in rop. If the inverse exists, the
return value is non-zero and rop will satisfy 0 < rop < op2. If an inverse doesn’t exist the
return value is zero and rop is undefined.

int mpz_jacobi (mpz-t a, mpz_t b) [Function]
Calculate the Jacobi symbol (¢). This is defined only for b odd.

int mpz_legendre (mpz_t a, mpz_t p) [Function]
Calculate the Legendre symbol (%) This is defined only for p an odd positive prime, and
for such p it’s identical to the Jacobi symbol.

38 MPIR 3.0.0

int mpz_kronecker (mpz-t a, mpz_t b) [Function]
int mpz_kronecker_si (mpz_t a, mpir_si b) [Function]
int mpz_kronecker_ui (mpz_t a, mpir_ui b) [Function]
int mpz_si_kronecker (mpir_si a, mpz-t b) [Function]
int mpz_ui_kronecker (mpir-ui a, mpz_t b) [Function]

Calculate the Jacobi symbol (%) with the Kronecker extension (£) = (2) when a odd, or

(%) = 0 when a even.

When b is odd the Jacobi symbol and Kronecker symbol are identical, so mpz_kronecker_ui
etc can be used for mixed precision Jacobi symbols too.

For more information see Henri Cohen section 1.4.2 (see Appendix B [References|, page 145),
or any number theory textbook. See also the example program demos/qcn.c which uses
mpz_kronecker_ui on the MPIR website.

mp_bitcnt_t mpz_remove (mpz.-t rop, mpz_t op, mpz_t f) [Function]
Remove all occurrences of the factor f from op and store the result in rop. The return value
is how many such occurrences were removed.

void mpz_fac_ui (mpz-t rop, unsigned long int n) [Function]
void mpz_2fac_ui (mpz-t rop, unsigned long int n) [Function]
void mpz_mfac_uiui (mpz_t rop, unsigned long int n, unsigned long int m) [Function]

Set rop to the factorial of n: mpz_fac_ui computes the plain factorial n!, mpz_2fac_ui
computes the double-factorial n!!, and mpz_mfac_uiui the m-multi-factorial n!(™).

void mpz_primorial_ui (mpz.t rop, unsigned long int n) [Function]
Set rop to the primorial of n, i.e. the product of all positive prime numbers < n.

void mpz_bin_ui (mpz-t rop, mpz_t n, mpir_ui k) [Function]
void mpz_bin_uiui (mpz_t rop, mpir_ui n, mpir_ui k) [Function]
Compute the binomial coefficient (}') and store the result in rop. Negative values of n are

n+k—1

N), see Knuth volume 1

supported by mpz_bin_ui, using the identity (7") = (—1)* (
section 1.2.6 part G.

void mpz_fib_ui (mpz-t fn, mpir_ui n) [Function]

void mpz_fib2_ui (mpz-t fn, mpz_t fnsubl, mpir_ui n) [Function]
mpz_fib_ui sets fn to to F,,, the n’th Fibonacci number. mpz_fib2_ui sets fn to F,,, and
fnsubl to F,_;.

These functions are designed for calculating isolated Fibonacci numbers. When a sequence of
values is wanted it’s best to start with mpz_£fib2_ui and iterate the defining F,,,; = F,,+F,_1
or similar.

void mpz_lucnum_ui (mpz_t 1n, mpir_ui n) [Function]

void mpz_lucnum2_ui (mpz_-t 1n, mpz_t lnsubl, mpir_ui n) [Function]
mpz_lucnum_ui sets In to to L,, the n’th Lucas number. mpz_lucnum2_ui sets In to L,, and
Insubl to L,,_;.

These functions are designed for calculating isolated Lucas numbers. When a sequence of
values is wanted it’s best to start with mpz_lucnum2_ui and iterate the defining L, =
L, + L,_; or similar.

The Fibonacci numbers and Lucas numbers are related sequences, so it’s never necessary
to call both mpz_fib2_ui and mpz_lucnum2_ui. The formulas for going from Fibonacci to

Chapter 5: Integer Functions 39

Lucas can be found in Section 16.7.5 [Lucas Numbers Algorithm]|, page 129, the reverse is
straightforward too.

5.10 Comparison Functions

int mpz_cmp (mpz_t opl, mpz_t op2) [Function]
int mpz_cmp_d (mpz_t opl, double op2) [Function]
int mpz_cmp_si (mpz_t opl, mpir_si op2) [Macro]
int mpz_cmp_ui (mpz_t opl, mpir_ui op2) [Macro]

Compare opl and op2. Return a positive value if opl > op2, zero if opl = op2, or a negative
value if opl < op2.

mpz_cmp_ui and mpz_cmp_si are macros and will evaluate their arguments more than once.
mpz_cmp_d can be called with an infinity, but results are undefined for a NaN.

int mpz_cmpabs (mpz_t opl, mpz_t op2) [Function]
int mpz_cmpabs_d (mpz_-t opl, double op2) [Function]
int mpz_cmpabs_ui (mpz_t opl, mpir_ui op2) [Function]

Compare the absolute values of opl and op2. Return a positive value if |opl| > |op2|, zero
if |opl| = |op2|, or a negative value if |opl| < |op2|.

mpz_cmpabs_d can be called with an infinity, but results are undefined for a NaN.

int mpz_sgn (mpz-t op) [Macro]
Return +1 if op > 0, 0 if op =0, and —1 if op < 0.

This function is actually implemented as a macro. It evaluates its argument multiple times.

5.11 Logical and Bit Manipulation Functions

These functions behave as if twos complement arithmetic were used (although sign-magnitude
is the actual implementation). The least significant bit is number 0.

void mpz_and (mpz-t rop, mpz_t opl, mpz_t op2) [Function]
Set rop to opl bitwise-and op2.

void mpz_ior (mpz_t rop, mpz_t opl, mpz_t op2) [Function]
Set rop to opl bitwise inclusive-or op2.

void mpz_xor (mpz_t rop, mpz_t opl, mpz_t op2) [Function]
Set rop to opl bitwise exclusive-or op2.

void mpz_com (mpz_t rop, mpz_t op) [Function]
Set rop to the one’s complement of op.

mp_bitcnt_t mpz_popcount (mpz_t op) [Function]
If op > 0, return the population count of op, which is the number of 1 bits in the binary
representation. If op < 0, the number of 1s is infinite, and the return value is ULONG_MAX,
the largest possible mp_bitcnt_t.

mp_bitcnt_t mpz_hamdist (mpz-t opl, mpz_t op2) [Function]
If opl and op2 are both > 0 or both < 0, return the hamming distance between the two
operands, which is the number of bit positions where opl and op2 have different bit values.
If one operand is > 0 and the other < 0 then the number of bits different is infinite, and the
return value is the largest possible imp_bitcnt_t.

40 MPIR 3.0.0

mp_bitcnt_t mpz_scanO (mpz-t op, mp_bitcnt_t starting_bit) [Function]

mp_bitcnt_t mpz_scanl (mpz-t op, mp_bitcnt_t starting_bit) [Function]
Scan op, starting from bit starting_bit, towards more significant bits, until the first 0 or 1 bit
(respectively) is found. Return the index of the found bit.

If the bit at starting_bit is already what’s sought, then starting_bit is returned.

If there’s no bit found, then the largest possible mp_bitcnt_t is returned. This will happen
in mpz_scan0 past the end of a positive number, or mpz_scanl past the end of a nonnegative
number.

void mpz_setbit (mpz-t rop, mp_bitcnt_t bit_index) [Function]
Set bit bit_index in rop.

void mpz_clrbit (mpz-t rop, mp_bitcnt_t bit_index) [Function]
Clear bit bit_index in rop.

void mpz_combit (mpz-t rop, mp_bitcnt_t bit_index) [Function]
Complement bit bit_index in rop.

int mpz_tstbit (mpz_t op, mp_bitcnt_t bit_index) [Function]
Test bit bit_index in op and return 0 or 1 accordingly.

5.12 Input and Output Functions

Functions that perform input from a stdio stream, and functions that output to a stdio stream.
Passing a NULL pointer for a stream argument to any of these functions will make them read
from stdin and write to stdout, respectively.

When using any of these functions, it is a good idea to include stdio.h before mpir.h, since
that will allow mpir.h to define prototypes for these functions.

size_t mpz_out_str (FILE *stream, int base, mpz_t op) [Function]
Output op on stdio stream stream, as a string of digits in base base. The base argument may
vary from 2 to 62 or from —2 to —36.

For base in the range 2..36, digits and lower-case letters are used; for —2..—36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

Return the number of bytes written, or if an error occurred, return 0.
size_t mpz_inp_str (mpz_t rop, FILE *stream, int base) [Function]

Input a possibly white-space preceded string in base base from stdio stream stream, and put
the read integer in rop.

The base may vary from 2 to 62, or if base is 0, then the leading characters are used: 0x and
0X for hexadecimal, Ob and OB for binary, O for octal, or decimal otherwise.

For bases up to 36, case is ignored; upper-case and lower-case letters have the same value. For
bases 37 to 62, upper-case letter represent the usual 10..35 while lower-case letter represent
36..61.

Return the number of bytes read, or if an error occurred, return 0.

Chapter 5: Integer Functions 41

size_t mpz_out_raw (FILE *stream, mpz_t op) [Function]
Output op on stdio stream stream, in raw binary format. The integer is written in a portable
format, with 4 bytes of size information, and that many bytes of limbs. Both the size and
the limbs are written in decreasing significance order (i.e., in big-endian).

The output can be read with mpz_inp_raw.
Return the number of bytes written, or if an error occurred, return 0.

The output of this can not be read by mpz_inp_raw from GMP 1, because of changes necessary
for compatibility between 32-bit and 64-bit machines.

size_t mpz_inp_raw (mpz-t rop, FILE *stream) [Function]
Input from stdio stream stream in the format written by mpz_out_raw, and put the result in
rop. Return the number of bytes read, or if an error occurred, return 0.

This routine can read the output from mpz_out_raw also from GMP 1, in spite of changes
necessary for compatibility between 32-bit and 64-bit machines.

5.13 Random Number Functions

The random number functions of MPIR come in two groups; older function that rely on a global
state, and newer functions that accept a state parameter that is read and modified. Please see
the Chapter 9 [Random Number Functions|, page 67 for more information on how to use and
not to use random number functions.

void mpz_urandomb (mpz_t rop, gmp_randstate_t state, mp_bitcnt_t n) [Function]
Generate a uniformly distributed random integer in the range 0 to 2" — 1, inclusive.

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization|, page 67) before invoking this function.

void mpz_urandomm (mpz-t rop, gmp_randstate_t state, mpz_t n) [Function]
Generate a uniform random integer in the range 0 to n — 1, inclusive.

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization], page 67) before invoking this function.

void mpz_rrandomb (mpz_t rop, gmp_randstate_t state, mp_bitcnt_t n) [Function]
Generate a random integer with long strings of zeros and ones in the binary representation.
Useful for testing functions and algorithms, since this kind of random numbers have proven
to be more likely to trigger corner-case bugs. The random number will be in the range 0 to
2" — 1, inclusive.

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization|, page 67) before invoking this function.

5.14 Integer Import and Export

mpz_t variables can be converted to and from arbitrary words of binary data with the following
functions.

void mpz_import (mpz.-t rop, size_-t count, int order, size_t size, int [Function]
endian, size_t nails, const void *op)
Set rop from an array of word data at op.

42 MPIR 3.0.0

The parameters specify the format of the data. count many words are read, each size bytes.
order can be 1 for most significant word first or -1 for least significant first. Within each
word endian can be 1 for most significant byte first, -1 for least significant first, or 0 for the
native endianness of the host CPU. The most significant nails bits of each word are skipped,
this can be 0 to use the full words.

There is no sign taken from the data, rop will simply be a positive integer. An application
can handle any sign itself, and apply it for instance with mpz_neg.

There are no data alignment restrictions on op, any address is allowed.

Here’s an example converting an array of mpir_ui data, most significant element first, and
host byte order within each value.

mpir_ui a[20];
mpz_t z;
mpz_import (z, 20, 1, sizeof(a[0]), 0, 0, a);

This example assumes the full sizeof bytes are used for data in the given type, which is
usually true, and certainly true for mpir_ui everywhere we know of. However on Cray vector
systems it may be noted that short and int are always stored in 8 bytes (and with sizeof
indicating that) but use only 32 or 46 bits. The nails feature can account for this, by passing
for instance 8*sizeof (int)-INT_BIT.

void * mpz_export (void *rop, size_t *countp, int order, size_t size, int [Function]
endian, size_t nails, mpz_t op)
Fill rop with word data from op.

The parameters specify the format of the data produced. Each word will be size bytes and
order can be 1 for most significant word first or -1 for least significant first. Within each
word endian can be 1 for most significant byte first, -1 for least significant first, or 0 for the
native endianness of the host CPU. The most significant nails bits of each word are unused
and set to zero, this can be 0 to produce full words.

The number of words produced is written to *countp, or countp can be NULL to discard the
count. rop must have enough space for the data, or if rop is NULL then a result array of
the necessary size is allocated using the current MPIR allocation function (see Chapter 14
[Custom Allocation], page 106). In either case the return value is the destination used, either
rop or the allocated block.

If op is non-zero then the most significant word produced will be non-zero. If op is zero then
the count returned will be zero and nothing written to rop. If rop is NULL in this case, no
block is allocated, just NULL is returned.

The sign of op is ignored, just the absolute value is exported. An application can use mpz_sgn
to get the sign and handle it as desired. (see Section 5.10 [Integer Comparisons|, page 39)

There are no data alignment restrictions on rop, any address is allowed.

When an application is allocating space itself the required size can be determined with a
calculation like the following. Since mpz_sizeinbase always returns at least 1, count here
will be at least one, which avoids any portability problems with malloc(0), though if z is
zero no space at all is actually needed (or written).

numb = 8%*size - nail;
count = (mpz_sizeinbase (z, 2) + numb-1) / numb;
p = malloc (count * size);

Chapter 5: Integer Functions 43

5.15 Miscellaneous Functions

int mpz_fits_ulong_p (mpz_t op) [Function]

int mpz_fits_slong_p (mpz_t op) [Function]

int mpz_fits_uint_p (mpz_t op) [Function]

int mpz_fits_sint_p (mpz_t op) [Function]

int mpz_fits_ushort_p (mpz_t op) [Function]

int mpz_fits_sshort_p (mpz_t op) [Function]
Return non-zero iff the value of op fits in an unsigned long, long, unsigned int, signed
int, unsigned short int, or signed short int, respectively. Otherwise, return zero.

int mpz_odd_p (mpz_t op) [Macro]

int mpz_even_p (mpz-t op) [Macro]
Determine whether op is odd or even, respectively. Return non-zero if yes, zero if no. These
macros evaluate their argument more than once.

size_t mpz_sizeinbase (mpz_-t op, int base) [Function]
Return the size of op measured in number of digits in the given base. base can vary from 2
to 36. The sign of op is ignored, just the absolute value is used. The result will be either
exact or 1 too big. If base is a power of 2, the result is always exact. If op is zero the return
value is always 1.

This function can be used to determine the space required when converting op to a string. The
right amount of allocation is normally two more than the value returned by mpz_sizeinbase,
one extra for a minus sign and one for the null-terminator.

It will be noted that mpz_sizeinbase(op,2) can be used to locate the most significant 1 bit
in op, counting from 1. (Unlike the bitwise functions which start from 0, See Section 5.11
[Logical and Bit Manipulation Functions|, page 39.)

5.16 Special Functions

The functions in this section are for various special purposes. Most applications will not need
them.

void mpz_array_init (mpz-t integer_array, size_-t array_size, [Function]
mp_size_t fixed_num_bits)
This is a special type of initialization. Fixed space of fixed_num_bits is allocated to each of
the array_size integers in integer_array. There is no way to free the storage allocated by this
function. Don’t call mpz_clear!

The integer_array parameter is the first mpz_t in the array. For example,

mpz_t arr[20000];
mpz_array_init (arr[0], 20000, 512);

This function is only intended for programs that create a large number of integers and need
to reduce memory usage by avoiding the overheads of allocating and reallocating lots of small
blocks. In normal programs this function is not recommended.

The space allocated to each integer by this function will not be automatically increased, unlike
the normal mpz_init, so an application must ensure it is sufficient for any value stored. The
following space requirements apply to various routines,

44 MPIR 3.0.0

e mpz_abs, mpz_neg, mpz_set, mpz_set_si and mpz_set_ui need room for the value they
store.

e mpz_add, mpz_add_ui, mpz_sub and mpz_sub_ui need room for the larger of the two
operands, plus an extra mp_bits_per_limb.

e mpz_mul, mpz_mul_ui and mpz_mul_ui need room for the sum of the number of bits in
their operands, but each rounded up to a multiple of mp_bits_per_limb.

e mpz_swap can be used between two array variables, but not between an array and a
normal variable.

For other functions, or if in doubt, the suggestion is to calculate in a regular mpz_init variable
and copy the result to an array variable with mpz_set.

This function is obsolete. It will disappear from future MPIR releases.

void * _mpz_realloc (mpz_t integer, mp_size_t new_alloc) [Function]
Change the space for integer to new_alloc limbs. The value in integer is preserved if it fits,
or is set to 0 if not. The return value is not useful to applications and should be ignored.

mpz_realloc?2 is the preferred way to accomplish allocation changes like this. mpz_realloc?2
and _mpz_realloc are the same except that _mpz_realloc takes its size in limbs.

mp_limb_t mpz_getlimbn (mpz_t op, mp_size_t n) [Function]
Return limb number n from op. The sign of op is ignored, just the absolute value is used.
The least significant limb is number 0.

mpz_size can be used to find how many limbs make up op. mpz_getlimbn returns zero if n
is outside the range 0 to mpz_size(op)-1.

size_t mpz_size (mpz_t op) [Function]
Return the size of op measured in number of limbs. If op is zero, the returned value will be
zZero.

const mp_limb_t * mpz_limbs_read (const mpz_t x) [Function]
Return a pointer to the limb array representing the absolute value of x. The size of the array
is mpz_size(x). Intended for read access only.

mp_limb_t * mpz_limbs_write (mpz_t x, mp_size_t n) [Function]

mp_limb_t * mpz_limbs_modify (mpz_t x, mp_size_t n) [Function]
Return a pointer to the limb array, intended for write access. The array is reallocated as
needed, to make room for n limbs. Requires n > 0. The mpz_limbs_modify function returns
an array that holds the old absolute value of x, while mpz_limbs_write may destroy the old
value and return an array with unspecified contents.

void mpz_limbs_finish (mpz-t x, mp_size_t s) [Function]
Updates the internal size field of x. Used after writing to the limb array pointer returned
by mpz_limbs_write or mpz_limbs_modify is completed. The array should contain |s| valid
limbs, representing the new absolute value for x, and the sign of x is taken from the sign of
s. This function never reallocates x, so the limb pointer remains valid.

void foo (mpz_t x)
{
mp_size_t n, 1i;
mp_limb_t *xp;

Chapter 5: Integer Functions 45

n = mpz_size (x);
xp = mpz_limbs_modify (x, 2*n);
for (i = 0; i < n; i++)
xp[ln+i] = xpln-1-i];
mpz_limbs_finish (x, mpz_sgn (x) < 0 7 - 2%n : 2%n);

mpz_srcptr mpz_roinit_n (mpz_t x, const mp_limb_t *xp, mp_size_t xs) [Function]
Special initialization of x, using the given limb array and size. x should be treated as read-
only: it can be passed safely as input to any mpz function, but not as an output. The array
xp must point to at least a readable limb, its size is |xs|, and the sign of x is the sign of xs.
For convenience, the function returns x, but cast to a const pointer type.

void foo (mpz_t x)

{
static const mp_limb_t y[3] = { 0x1, 0x2, 0x3 };
mpz_t tmp;

mpz_add (x, x, mpz_roinit_n (tmp, y, 3));
}

mpz_t MPZ_ROINIT_N (mp-_limb_t *xp, mp_size_t xs) [Macro]
This macro expands to an initializer which can be assigned to an mpz_t variable. The
limb array xp must point to at least a readable limb, moreover, unlike the mpz_roinit_n
function, the array must be normalized: if xs is non-zero, then xp[|xs| —1] must be non-zero.

Intended primarily for constant values. Using it for non-constant values requires a C compiler
supporting C99.

void foo (mpz_t x)
{
static const mp_limb_t yal3] = { Ox1, 0x2, 0x3 };
static const mpz_t y = MPZ_ROINIT_N ((mp_limb_t *) ya, 3);

mpz_add (x, x, y);
}

46 MPIR 3.0.0

6 Rational Number Functions

This chapter describes the MPIR functions for performing arithmetic on rational numbers. These
functions start with the prefix mpq_.

Rational numbers are stored in objects of type mpq_t.

All rational arithmetic functions assume operands have a canonical form, and canonicalize their
result. The canonical from means that the denominator and the numerator have no common
factors, and that the denominator is positive. Zero has the unique representation 0/1.

Pure assignment functions do not canonicalize the assigned variable. It is the responsibility of
the user to canonicalize the assigned variable before any arithmetic operations are performed on
that variable.

void mpq_canonicalize (mpq-t op) [Function]
Remove any factors that are common to the numerator and denominator of op, and make
the denominator positive.

6.1 Initialization and Assignment Functions

void mpq_init (mpq-t dest_rational) [Function]
Initialize dest_rational and set it to 0/1. Each variable should normally only be initialized
once, or at least cleared out (using the function mpq_clear) between each initialization.

void mpq_inits (mpq-t x, ...) [Function]
Initialize a NULL-terminated list of mpgq_t variables, and set their values to 0/1.

void mpq_clear (mpq-t rational_number) [Function]
Free the space occupied by rational_number. Make sure to call this function for all mpq_t
variables when you are done with them.

void mpq_clears (mpq-t x, ...) [Function]
Free the space occupied by a NULL-terminated list of mpq_t variables.

void mpq_set (mpq-t rop, mpq-t op) [Function]
void mpq_set_z (mpq-t rop, mpz_t op) [Function]
Assign rop from op.

void mpq_set_ui (mpq.-t rop, mpir_ui opl, mpir_ui op2) [Function]

void mpq_set_si (mpq-t rop, mpir_si opl, mpir_ui op2) [Function]
Set the value of rop to opl/op2. Note that if opl and op2 have common factors, rop has to
be passed to mpq_canonicalize before any operations are performed on rop.

int mpq_set_str (mpq-t rop, char *str, int base) [Function]
Set rop from a null-terminated string str in the given base.

The string can be an integer like “41” or a fraction like “41/152”. The fraction must be
in canonical form (see Chapter 6 [Rational Number Functions|, page 46), or if not then
mpqg_canonicalize must be called.

The numerator and optional denominator are parsed the same as in mpz_set_str (see
Section 5.2 [Assigning Integers], page 30). White space is allowed in the string, and is simply
ignored. The base can vary from 2 to 62, or if base is 0 then the leading characters are used:

Chapter 6: Rational Number Functions 47

0x or OX for hex, Ob or OB for binary, 0 for octal, or decimal otherwise. Note that this is done
separately for the numerator and denominator, so for instance 0xEF/100 is 239/100, whereas
0xEF/0x100 is 239/256.

The return value is 0 if the entire string is a valid number, or —1 if not.

void mpq_swap (mpq-t ropl, mpq_t rop2) [Function]
Swap the values ropl and rop2 efficiently.

6.2 Conversion Functions

double mpq_get_d (mpq-t op) [Function]
Convert op to a double, truncating if necessary (ie. rounding towards zero).

If the exponent from the conversion is too big or too small to fit a double then the result is
system dependent. For too big an infinity is returned when available. For too small 0.0 is
normally returned. Hardware overflow, underflow and denorm traps may or may not occur.

void mpq_set_d (mpq-t rop, double op) [Function]
void mpq_set_f (mpq-t rop, mpf.t op) [Function]
Set rop to the value of op. There is no rounding, this conversion is exact.

char * mpq_get_str (char *str, int base, mpq-t op) [Function]
Convert op to a string of digits in base base. The base may vary from 2 to 36. The string
will be of the form ‘num/den’, or if the denominator is 1 then just ‘num’.

If str is NULL, the result string is allocated using the current allocation function (see
Chapter 14 [Custom Allocation], page 106). The block will be strlen(str)+1 bytes, that
being exactly enough for the string and null-terminator.

If str is not NULL, it should point to a block of storage large enough for the result, that being

mpz_sizeinbase (mpq_numref(op), base)
+ mpz_sizeinbase (mpq_denref(op), base) + 3

The three extra bytes are for a possible minus sign, possible slash, and the null-terminator.

A pointer to the result string is returned, being either the allocated block, or the given str.

6.3 Arithmetic Functions

void mpq_add (mpq-t sum, mpq-t addend1, mpq-t addend?2) [Function]
Set sum to addendl + addend?.

void mpq_sub (mpq-t difference, mpq_t minuend, mpq-t subtrahend) [Function]
Set difference to minuend — subtrahend.

void mpq_mul (mpq-t product, mpq-t multiplier, mpq-t multiplicand) [Function]
Set product to multiplier x multiplicand.

void mpq_mul_2exp (mpq-t rop, mpq-t opl, mp_bitcnt_t op2) [Function]
Set rop to opl x 2°P2,

void mpq_div (mpq-t quotient, mpq-t dividend, mpq-t divisor) [Function]
Set quotient to dividend/divisor.

48 MPIR 3.0.0

void mpq_div_2exp (mpq-t rop, mpq-t opl, mp_bitcnt_t op2) [Function]
Set rop to opl/2°P2.

void mpq_neg (mpq-t negated_operand, mpq-t operand) [Function]
Set negated_operand to —operand.

void mpq_abs (mpq-t rop, mpq-t op) [Function]
Set rop to the absolute value of op.

void mpq_inv (mpq-t inverted_number, mpq_t number) [Function]
Set inverted_number to 1/number. If the new denominator is zero, this routine will divide
by zero.

6.4 Comparison Functions

int mpq_cmp (mpq-t opl, mpq_-t op2) [Function]

int mpq_cmp_z (const mpq_t opl, const mpz_t op2) [Function]
Compare opl and op2. Return a positive value if opl > op2, zero if opl = op2, and a
negative value if opl < op2.

To determine if two rationals are equal, mpq_equal is faster than mpq_cmp.

int mpq_cmp_ui (mpq-t opl, mpir_ui num2, mpir-ui den2) [Macro]

int mpq_cmp_si (mpq-t opl, mpir_si num2, mpir_ui den2) [Macro]
Compare opl and num2/den2. Return a positive value if opl > num?2/den2, zero if opl =
num?2/den2, and a negative value if opl < num2/den2.

num?2 and den2 are allowed to have common factors.

These functions are implemented as a macros and evaluate their arguments multiple times.

int mpq_sgn (mpq-t op) [Macro]
Return +1 if op > 0, 0 if op =0, and —1 if op < 0.

This function is actually implemented as a macro. It evaluates its arguments multiple times.

int mpq_equal (mpq-t opl, mpq-t op2) [Function]
Return non-zero if opl and op2 are equal, zero if they are non-equal. Although mpq_cmp can
be used for the same purpose, this function is much faster.

6.5 Applying Integer Functions to Rationals

The set of mpq functions is quite small. In particular, there are few functions for either input
or output. The following functions give direct access to the numerator and denominator of an

mpq_t.

Note that if an assignment to the numerator and/or denominator could take an mpq_t out
of the canonical form described at the start of this chapter (see Chapter 6 [Rational Number
Functions|, page 46) then mpq_canonicalize must be called before any other mpq functions are
applied to that mpqg_t.

mpz_t mpq_numref (mpq_t op) [Macro]

mpz_t mpq_denref (mpq_t op) [Macro]
Return a reference to the numerator and denominator of op, respectively. The mpz functions
can be used on the result of these macros.

Chapter 6: Rational Number Functions 49

void mpq_get_num (mpz.t numerator, mpq-t rational) [Function]
void mpq_get_den (mpz.-t denominator, mpq-t rational) [Function]
void mpq_set_num (mpq-t rational, mpz_t numerator) [Function]
void mpq_set_den (mpq-t rational, mpz_t denominator) [Function]

Get or set the numerator or denominator of a rational. These functions are equivalent to
calling mpz_set with an appropriate mpq_numref or mpq_denref. Direct use of mpq_numref
or mpq_denref is recommended instead of these functions.

6.6 Input and Output Functions

When using any of these functions, it’s a good idea to include stdio.h before mpir.h, since
that will allow mpir.h to define prototypes for these functions.

Passing a NULL pointer for a stream argument to any of these functions will make them read
from stdin and write to stdout, respectively.

size_t mpq_out_str (FILE *stream, int base, mpq_-t op) [Function]
Output op on stdio stream stream, as a string of digits in base base. The base may vary from
2 to 36. Output is in the form ‘num/den’ or if the denominator is 1 then just ‘num’.

Return the number of bytes written, or if an error occurred, return 0.

size_t mpq_inp_str (mpq-t rop, FILE *stream, int base) [Function]
Read a string of digits from stream and convert them to a rational in rop. Any initial white-
space characters are read and discarded. Return the number of characters read (including
white space), or 0 if a rational could not be read.

The input can be a fraction like ‘17/63’ or just an integer like ‘123’. Reading stops at the
first character not in this form, and white space is not permitted within the string. If the
input might not be in canonical form, then mpq_canonicalize must be called (see Chapter 6
[Rational Number Functions|, page 46).

The base can be between 2 and 36, or can be 0 in which case the leading characters of the
string determine the base, ‘0x’ or ‘0X’ for hexadecimal, ‘0’ for octal, or decimal otherwise.
The leading characters are examined separately for the numerator and denominator of a
fraction, so for instance ‘0x10/11’ is 16/11, whereas ‘0x10/0x11’ is 16/17.

50 MPIR 3.0.0

7 Floating-point Functions

MPIR floating point numbers are stored in objects of type mpf_t and functions operating on
them have an mpf_ prefix.

The mantissa of each float has a user-selectable precision, limited only by available memory.
Each variable has its own precision, and that can be increased or decreased at any time.

The exponent of each float is a fixed precision, one machine word on most systems. In the
current implementation the exponent is a count of limbs, so for example on a 32-bit system this
means a range of roughly 2768719476768 q 9G87TI9476736) o 5 G4-bit system this will be greater.
Note however mpf_get_str can only return an exponent which fits an mp_exp_t and currently
mpf_set_str doesn’t accept exponents bigger than a mpir_si.

Each variable keeps a size for the mantissa data actually in use. This means that if a float is
exactly represented in only a few bits then only those bits will be used in a calculation, even if
the selected precision is high.

All calculations are performed to the precision of the destination variable. Each function is
defined to calculate with “infinite precision” followed by a truncation to the destination precision,
but of course the work done is only what’s needed to determine a result under that definition.

The precision selected for a variable is a minimum value, MPIR may increase it a little to
facilitate efficient calculation. Currently this means rounding up to a whole limb, and then
sometimes having a further partial limb, depending on the high limb of the mantissa. But
applications shouldn’t be concerned by such details.

The mantissa in stored in binary, as might be imagined from the fact precisions are expressed
in bits. One consequence of this is that decimal fractions like 0.1 cannot be represented exactly.
The same is true of plain IEEE double floats. This makes both highly unsuitable for calculations
involving money or other values that should be exact decimal fractions. (Suitably scaled integers,
or perhaps rationals, are better choices.)

mpf functions and variables have no special notion of infinity or not-a-number, and applications
must take care not to overflow the exponent or results will be unpredictable. This might change
in a future release.

Note that the mpf functions are not intended as a smooth extension to IEEE P754 arithmetic.
In particular results obtained on one computer often differ from the results on a computer with
a different word size.

7.1 Initialization Functions

void mpf_set_default_prec (mp-bitcnt-t prec) [Function]
Set the default precision to be at least prec bits. All subsequent calls to mpf_init will use
this precision, but previously initialized variables are unaffected.

mp_bitcnt_t mpf_get_default_prec (void) [Function]
Return the default precision actually used.

An mpf_t object must be initialized before storing the first value in it. The functions mpf_init
and mpf_init2 are used for that purpose.

Chapter 7: Floating-point Functions 51

void mpf_init (mpf-t x) [Function]
Initialize x to 0. Normally, a variable should be initialized once only or at least be cleared,
using mpf_clear, between initializations. The precision of x is undefined unless a default
precision has already been established by a call to mpf_set_default_prec.

void mpf_init2 (mpf.-t x, mp_bitcnt_t prec) [Function]
Initialize x to 0 and set its precision to be at least prec bits. Normally, a variable should be
initialized once only or at least be cleared, using mpf_clear, between initializations.

void mpf_inits (mpf.-t x, ...) [Function]
Initialize a NULL-terminated list of mpf _t variables, and set their values to 0. The precision
of the initialized variables is undefined unless a default precision has already been established
by a call to mpf_set_default_prec.

void mpf_clear (mpf-t x) [Function]
Free the space occupied by x. Make sure to call this function for all mpf_t variables when

you are done with them.

void mpf_clears (mpf.t x, ...) [Function]
Free the space occupied by a NULL-terminated list of mpf_t variables.

Here is an example on how to initialize floating-point variables:

{
mpf_t x, y;
mpf_init (x); /* use default precision */
mpf_init2 (y, 256); /* precision at least 256 bits */
/* Unless the program is about to exit, do ... */
mpf_clear (x);
mpf_clear (y);

}

The following three functions are useful for changing the precision during a calculation. A typical
use would be for adjusting the precision gradually in iterative algorithms like Newton-Raphson,
making the computation precision closely match the actual accurate part of the numbers.

mp_bitcnt_t mpf_get_prec (mpf.t op) [Function]
Return the current precision of op, in bits.

void mpf_set_prec (mpf.-t rop, mp_bitcnt_t prec) [Function]
Set the precision of rop to be at least prec bits. The value in rop will be truncated to the
new precision.

This function requires a call to realloc, and so should not be used in a tight loop.

void mpf_set_prec_raw (mpf-t rop, mp_bitcnt_t prec) [Function]
Set the precision of rop to be at least prec bits, without changing the memory allocated.

prec must be no more than the allocated precision for rop, that being the precision when rop
was initialized, or in the most recent mpf_set_prec.

The value in rop is unchanged, and in particular if it had a higher precision than prec it will
retain that higher precision. New values written to rop will use the new prec.

59 MPIR 3.0.0

Before calling mpf _clear or the full mpf_set_prec, another mpf_set_prec_raw call must be
made to restore rop to its original allocated precision. Failing to do so will have unpredictable
results.

mpf_get_prec can be used before mpf_set_prec_raw to get the original allocated precision.
After mpf_set_prec_raw it reflects the prec value set.

mpf_set_prec_raw is an efficient way to use an mpf_t variable at different precisions during
a calculation, perhaps to gradually increase precision in an iteration, or just to use various
different precisions for different purposes during a calculation.

7.2 Assignment Functions

These functions assign new values to already initialized floats (see Section 7.1 [Initializing Floats],
page 50).

void mpf_set (mpf-t rop, mpf_t op) Function]
void mpf_set_ui (mpf-t rop, mpir_ui op) Function
void mpf_set_si (mpf.-t rop, mpir_si op) Function

[
Funcion)
void mpf_set_d (mpf.-t rop, double op) [Function]
[}
[}

void mpf_set_z (mpf-t rop, mpz_t op) Function

void mpf_set_q (mpf-t rop, mpq-t op) Function
Set the value of rop from op.

int mpf_set_str (mpf.t rop, char *str, int base) [Function]

Set the value of rop from the string in str. The string is of the form ‘M@N’ or, if the base is 10
or less, alternatively ‘MeN’. ‘M’ is the mantissa and ‘N’ is the exponent. The mantissa is always
in the specified base. The exponent is either in the specified base or, if base is negative, in
decimal. The decimal point expected is taken from the current locale, on systems providing
localeconv.

The argument base may be in the ranges 2 to 62, or —62 to —2. Negative values are used to
specify that the exponent is in decimal.

For bases up to 36, case is ignored; upper-case and lower-case letters have the same value; for
bases 37 to 62, upper-case letter represent the usual 10..35 while lower-case letter represent
36..61.

Unlike the corresponding mpz function, the base will not be determined from the leading
characters of the string if base is 0. This is so that numbers like ‘0.23’ are not interpreted
as octal.

White space is allowed in the string, and is simply ignored. [This is not really true; white-
space is ignored in the beginning of the string and within the mantissa, but not in other
places, such as after a minus sign or in the exponent. We are considering changing the
definition of this function, making it fail when there is any white-space in the input, since
that makes a lot of sense. Please tell us your opinion about this change. Do you really want
it to accept "3 14" as meaning 314 as it does now?]

This function returns 0 if the entire string is a valid number in base base. Otherwise it returns
—1.

void mpf_swap (mpf-t ropl, mpf_t rop2) [Function]
Swap ropl and rop2 efficiently. Both the values and the precisions of the two variables are
swapped.

Chapter 7: Floating-point Functions 53

7.3 Combined Initialization and Assignment Functions

For convenience, MPIR provides a parallel series of initialize-and-set functions which initialize
the output and then store the value there. These functions’ names have the form mpf_init_
set. ..

Once the float has been initialized by any of the mpf_init_set... functions, it can be used as
the source or destination operand for the ordinary float functions. Don’t use an initialize-and-set
function on a variable already initialized!

void mpf_init_set (mpf.t rop, mpf.t op) [Function]

void mpf_init_set_ui (mpf.t rop, mpir_ui op) [Function]

void mpf_init_set_si (mpf.t rop, mpir_si op) [Function]

void mpf_init_set_d (mpf-t rop, double op) [Function]
Initialize rop and set its value from op.

The precision of rop will be taken from the active default precision, as set by mpf_set_
default_prec.

int mpf_init_set_str (mpf.t rop, char *str, int base) [Function]
Initialize rop and set its value from the string in str. See mpf_set_str above for details on
the assignment operation.

Note that rop is initialized even if an error occurs. (I.e., you have to call mpf_clear for it.)

The precision of rop will be taken from the active default precision, as set by mpf_set_
default_prec.

7.4 Conversion Functions

double mpf_get_d (mpf_t op) [Function]
Convert op to a double, truncating if necessary (ie. rounding towards zero).

If the exponent in op is too big or too small to fit a double then the result is system dependent.
For too big an infinity is returned when available. For too small 0.0 is normally returned.
Hardware overflow, underflow and denorm traps may or may not occur.

double mpf_get_d_2exp (mpir_si *exp, mpf_t op) [Function]
Convert op to a double, truncating if necessary (ie. rounding towards zero), and with an
exponent returned separately.

The return value is in the range 0.5 < |d| < 1 and the exponent is stored to *exp. d * 2°"? is
the (truncated) op value. If op is zero, the return is 0.0 and 0 is stored to *exp.

This is similar to the standard C frexp function (see Section “Normalization Functions” in
The GNU C Library Reference Manual).

mpir_si mpf_get_si (mpf.-t op) [Function]

mpir_ui mpf_get_ui (mpf-t op) [Function]
Convert op to a mpir_si or mpir_ui, truncating any fraction part. If op is too big for the
return type, the result is undefined.

See also mpf_fits_slong_p and mpf_fits_ulong_p (see Section 7.8 [Miscellaneous Float
Functions], page 56).

MPIR 3.0.0

char * mpf_get_str (char *str, mp_exp-t *expptr, int base, size_t [Function]

n_digits, mpf_t op)
Convert op to a string of digits in base base. base can vary from 2 to 362 or from —2 to —36.
Up to n_digits digits will be generated. Trailing zeros are not returned. No more digits than
can be accurately represented by op are ever generated. If n_digits is 0 then that accurate
maximum number of digits are generated.

For base in the range 2..36, digits and lower-case letters are used; for —2..—36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

If str is NULL, the result string is allocated using the current allocation function (see
Chapter 14 [Custom Allocation], page 106). The block will be strlen(str)+1 bytes, that
being exactly enough for the string and null-terminator.

If str is not NULL, it should point to a block of n_digits + 2 bytes, that being enough for
the mantissa, a possible minus sign, and a null-terminator. When n_digits is 0 to get all
significant digits, an application won’t be able to know the space required, and str should be
NULL in that case.

The generated string is a fraction, with an implicit radix point immediately to the left of the
first digit. The applicable exponent is written through the expptr pointer. For example, the
number 3.1416 would be returned as string "31416" and exponent 1.

When op is zero, an empty string is produced and the exponent returned is 0.

A pointer to the result string is returned, being either the allocated block or the given str.

7.5 Arithmetic Functions

void mpf_add (mpf-t rop, mpf-t opl, mpf_t op2) [Function]

void mpf_add_ui (mpf-t rop, mpf-t opl, mpir_ui op2) [Function]
Set rop to opl + op2.

void mpf_sub (mpf-t rop, mpf_-t op1l, mpf-t op2) [Function]

void mpf_ui_sub (mpf.-t rop, mpir_ui opl, mpf-t op2) [Function]

void mpf_sub_ui (mpf_-t rop, mpf-t opl, mpir_ui op2) [Function]
Set rop to opl — op2.

void mpf_mul (mpf-t rop, mpf_-t opl, mpf-t op2) [Function]

void mpf_mul_ui (mpf-t rop, mpf-t opl, mpir_ui op2) [Function]

Set rop to opl x op2.

Division is undefined if the divisor is zero, and passing a zero divisor to the divide functions
will make these functions intentionally divide by zero. This lets the user handle arithmetic

exceptions in these functions in the same manner as other arithmetic exceptions.

void mpf_div (mpf.t rop, mpf-t opl, mpf_t op2) [Function]

void mpf_ui_div (mpf-t rop, mpir_ui opl, mpf t op2) [Function]

void mpf_div_ui (mpf-t rop, mpf.-t opl, mpir_ui op2) [Function]
Set rop to opl/op2.

void mpf_sqrt (mpf-t rop, mpf_t op) [Function]

void mpf_sqrt_ui (mpf.t rop, mpir_ui op) [Function]

Set rop to ,/op.

Chapter 7: Floating-point Functions 55

void mpf_pow_ui (mpf-t rop, mpf.t opl, mpir_ui op2) [Function]
Set rop to op1°P2.

void mpf_neg (mpf-t rop, mpf_t op) [Function]
Set rop to —op.

void mpf_abs (mpf-t rop, mpf_t op) [Function]
Set rop to the absolute value of op.

void mpf_mul_2exp (mpf.t rop, mpf-t opl, mp_bitcnt_t op2) [Function]
Set rop to opl x 2°P2,

void mpf_div_2exp (mpf.t rop, mpf-t opl, mp_bitcnt_t op2) [Function]
Set rop to opl/2°P2.

7.6 Comparison Functions

int mpf_cmp (mpf_-t opl, mpf.t op2) [Function]
int mpf_cmp_d (mpf_t opl, double op2) [Function]
int mpf_cmp_ui (mpf.t opl, mpir_ui op2) [Function]
int mpf_cmp_si (mpf.t opl, mpir_si op2) [Function]

Compare opl and op2. Return a positive value if opl > op2, zero if opl = op2, and a
negative value if opl < op2.

mpf_cmp_d can be called with an infinity, but results are undefined for a NaN.

int mpf_eq (mpf-t opl, mpf_t op2, mp_bitcnt_t op3) [Function]
Return non-zero if the first op3 bits of opl and op2 are equal, zero otherwise. l.e., test if
opl and op2 are approximately equal.

In the future values like 1000 and 0111 may be considered the same to 3 bits (on the basis
that their difference is that small).

void mpf_reldiff (mpf.t rop, mpf-t opl, mpf_t op2) [Function]
Compute the relative difference between opl and op2 and store the result in rop. This is
lopl — op2|/opl.

int mpf_sgn (mpf.t op) [Macro]
Return +1 if op > 0, 0 if op =0, and —1 if op < 0.

This function is actually implemented as a macro. It evaluates its arguments multiple times.

7.7 Input and Output Functions

Functions that perform input from a stdio stream, and functions that output to a stdio stream.
Passing a NULL pointer for a stream argument to any of these functions will make them read
from stdin and write to stdout, respectively.

When using any of these functions, it is a good idea to include stdio.h before mpir.h, since
that will allow mpir.h to define prototypes for these functions.

size_t mpf_out_str (FILE *stream, int base, size_.t n_digits, mpf.t op) [Function]
Print op to stream, as a string of digits. Return the number of bytes written, or if an error
occurred, return 0.

56 MPIR 3.0.0

The mantissa is prefixed with an ‘0.’ and is in the given base, which may vary from 2 to 36.
An exponent then printed, separated by an ‘e’, or if base is greater than 10 then by an ‘@’.
The exponent is always in decimal. The decimal point follows the current locale, on systems
providing localeconv.

For base in the range 2..36, digits and lower-case letters are used; for —2..—36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

Up to n_digits will be printed from the mantissa, except that no more digits than are accu-
rately representable by op will be printed. n_digits can be 0 to select that accurate maximum.

size_t mpf_inp_str (mpf.t rop, FILE *stream, int base) [Function]
Read a string in base base from stream, and put the read float in rop. The string is of
the form ‘M@N’ or, if the base is 10 or less, alternatively ‘MeN’. ‘M’ is the mantissa and ‘N’ is
the exponent. The mantissa is always in the specified base. The exponent is either in the
specified base or, if base is negative, in decimal. The decimal point expected is taken from
the current locale, on systems providing localeconv.

The argument base may be in the ranges 2 to 36, or —36 to —2. Negative values are used to
specify that the exponent is in decimal.

Unlike the corresponding mpz function, the base will not be determined from the leading
characters of the string if base is 0. This is so that numbers like ‘0.23’ are not interpreted
as octal.

Return the number of bytes read, or if an error occurred, return 0.

7.8 Miscellaneous Functions

void mpf_ceil (mpf-t rop, mpf_t op) [Function]
void mpf_floor (mpf-t rop, mpf_t op) [Function]
void mpf_trunc (mpf-t rop, mpf_t op) [Function]

Set rop to op rounded to an integer. mpf_ceil rounds to the next higher integer, mpf_floor
to the next lower, and mpf_trunc to the integer towards zero.

int mpf_integer_p (mpf-t op) [Function]
Return non-zero if op is an integer.

int mpf_fits_ulong_p (mpf-t op) Function]
int mpf_fits_slong_p (mpf-t op) Function
int mpf_fits_uint_p (mpf-t op) Function

int mpf_fits_ushort_p (mpf.-t op) Function
int mpf_fits_sshort_p (mpf.-t op) Function
Return non-zero if op would fit in the respective C data type, when truncated to an integer.

[
Funcion)
int mpf_fits_sint_p (mpf_t op) [Function]
[}
[]

void mpf_urandomb (mpf t rop, gmp-_randstate_t state, mp_bitcnt_t [Function]
nbits)
Generate a uniformly distributed random float in rop, such that 0 < rop < 1, with nbits
significant bits in the mantissa.

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization|, page 67) before invoking this function.

Chapter 7: Floating-point Functions 57

void mpf_rrandomb (mpf.t rop, gmp_randstate_t state, mp_size_t [Function]
max_size, mp_exp-t exp)
Generate a random float of at most max_size limbs, with long strings of zeros and ones
in the binary representation. The exponent of the number is in the interval —exp to exp
(in limbs). This function is useful for testing functions and algorithms, since these kind of
random numbers have proven to be more likely to trigger corner-case bugs. Negative random
numbers are generated when max_size is negative.

This interface is preliminary. It might change incompatibly in future revisions.

void mpf_random2 (mpf-t rop, mp-size-t max_size, mp_exp-t exp) [Function]
Generate a random float of at most max_size limbs, with long strings of zeros and ones
in the binary representation. The exponent of the number is in the interval —exp to exp
(in limbs). This function is useful for testing functions and algorithms, since these kind of
random numbers have proven to be more likely to trigger corner-case bugs. Negative random
numbers are generated when max_size is negative.

This function is obsolete. It will disappear from future MPIR releases.

58 MPIR 3.0.0

8 Low-level Functions

This chapter describes low-level MPIR functions, used to implement the high-level MPIR func-
tions, but also intended for time-critical user code.

These functions start with the prefix mpn_.

The mpn functions are designed to be as fast as possible, not to provide a coherent calling
interface. The different functions have somewhat similar interfaces, but there are variations that
make them hard to use. These functions do as little as possible apart from the real multiple
precision computation, so that no time is spent on things that not all callers need.

A source operand is specified by a pointer to the least significant limb and a limb count. A
destination operand is specified by just a pointer. It is the responsibility of the caller to ensure
that the destination has enough space for storing the result.

With this way of specifying operands, it is possible to perform computations on subranges of an
argument, and store the result into a subrange of a destination.

A common requirement for all functions is that each source area needs at least one limb. No size
argument may be zero. Unless otherwise stated, in-place operations are allowed where source
and destination are the same, but not where they only partly overlap.

The mpn functions are the base for the implementation of the mpz_, mpf_, and mpq_ functions.

This example adds the number beginning at sIp and the number beginning at s2p and writes
the sum at destp. All areas have n limbs.

cy = mpn_add_n (destp, slp, s2p, n)

It should be noted that the mpn functions make no attempt to identify high or low zero limbs
on their operands, or other special forms. On random data such cases will be unlikely and it’d
be wasteful for every function to check every time. An application knowing something about its
data can take steps to trim or perhaps split its calculations.

In the notation used below, a source operand is identified by the pointer to the least significant
limb, and the limb count in braces. For example, {slp, sln}.

mp_limb_t mpn_add_n (mp-limb_t *rp, const mp_limb_t *s1p, const [Function]
mp_limb_t *s2p, mp_size_t n)
Add {slp, n} and {s2p, n}, and write the n least significant limbs of the result to rp. Return
carry, either 0 or 1.

This is the lowest-level function for addition. It is the preferred function for addition, since
it is written in assembly for most CPUs. For addition of a variable to itself (i.e., sIp equals
s2p, use mpn_lshift with a count of 1 for optimal speed.

mp_limb_t mpn_add_1 (mp-limb_t *rp, const mp_limb_t *s1p, mp_size_t n, [Function]
mp_limb_t s21imb)
Add {sIp, n} and s2limb, and write the n least significant limbs of the result to rp. Return
carry, either 0 or 1.

mp_limb_t mpn_add (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t sin, [Function]
const mp_limb_t *s2p, mp_size_t s2n)
Add {slp, sin} and {s2p, s2n}, and write the sIn least significant limbs of the result to rp.
Return carry, either 0 or 1.

Chapter 8: Low-level Functions 59

This function requires that sln is greater than or equal to s2n.

mp_limb_t mpn_sub_n (mp-limb_t *rp, const mp_limb_t *s1p, const [Function]
mp_limb_t *s2p, mp_size_t n)
Subtract {s2p, n} from {slp, n}, and write the n least significant limbs of the result to rp.
Return borrow, either 0 or 1.

This is the lowest-level function for subtraction. It is the preferred function for subtraction,
since it is written in assembly for most CPUs.

mp_limb_t mpn_sub_1 (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t n, [Function]
mp_limb_t s21imb)
Subtract s2limb from {slp, n}, and write the n least significant limbs of the result to rp.
Return borrow, either 0 or 1.

mp_limb_t mpn_sub (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t sin, [Function]
const mp_limb_t *s2p, mp_size_t s2n)
Subtract {s2p, s2n} from {slp, sin}, and write the sIn least significant limbs of the result to
rp. Return borrow, either 0 or 1.

This function requires that sin is greater than or equal to s2n.

void mpn_neg (mp-limb_t *rp, const mp_limb_t *sp, mp_size_t n) [Function]
Perform the negation of {sp, n}, and write the result to {rp, n}. Return carry-out.

void mpn_mul_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t [Function]
*s2p, mp_size_t n)
Multiply {sIp, n} and {s2p, n}, and write the 2*n-limb result to rp.

The destination has to have space for 2*n limbs, even if the product’s most significant limb
is zero. No overlap is permitted between the destination and either source.

If the input operands are the same, mpn_sqr will generally be faster.

mp_limb_t mpn_mul_1 (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t n, [Function]
mp_limb_t s21imb)
Multiply {sIp, n} by s2limb, and write the n least significant limbs of the product to rp.
Return the most significant limb of the product. {slp, n} and {rp, n} are allowed to overlap
provided rp < slp.

This is a low-level function that is a building block for general multiplication as well as other
operations in MPIR. It is written in assembly for most CPUs.

Don’t call this function if s2limb is a power of 2; use mpn_lshift with a count equal to the
logarithm of s2limb instead, for optimal speed.

mp_limb_t mpn_addmul_1 (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t [Function]
n, mp_limb_t s21imb)
Multiply {slp, n} and s2limb, and add the n least significant limbs of the product to {rp, n}
and write the result to rp. Return the most significant limb of the product, plus carry-out
from the addition.

This is a low-level function that is a building block for general multiplication as well as other
operations in MPIR. It is written in assembly for most CPUs.

60 MPIR 3.0.0

mp_limb_t mpn_submul_1 (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_.t [Function]
n, mp_limb_t s21imb)
Multiply {sIp, n} and s2limb, and subtract the n least significant limbs of the product from
{rp, n} and write the result to rp. Return the most significant limb of the product, minus
borrow-out from the subtraction.

This is a low-level function that is a building block for general multiplication and division as
well as other operations in MPIR. It is written in assembly for most CPUs.

mp_limb_t mpn_mul (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t sin, [Function]
const mp_limb_t *s2p, mp_size_t s2n)
Multiply {slp, sin} and {s2p, s2n}, and write the result to rp. Return the most significant
limb of the result.

The destination has to have space for sIin + s2n limbs, even if the result might be one limb
smaller.

This function requires that sln is greater than or equal to s2n. The destination must be
distinct from both input operands.

void mpn_sqr (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t n) [Function]
Compute the square of {slIp, n} and write the 2*n-limb result to rp.

The destination has to have space for 2*n limbs, even if the result’s most significant limb is
zero. No overlap is permitted between the destination and the source.

void mpn_tdiv_qr (mp_limb_t *qp, mp_limb_t *rp, mp_size_t qxn, const [Function]
mp_limb_t *np, mp_size_t nn, const mp_limb_t *dp, mp_size_t dn)
Divide {np, nn} by {dp, dn} and put the quotient at {gp, nn—dn+1} and the remainder at
{rp, dn}. The quotient is rounded towards 0.

No overlap is permitted between arguments. nn must be greater than or equal to dn. The
most significant limb of dp must be non-zero. The gxn operand must be zero.

mp_limb_t mpn_divrem (mp_limb_t *r1p, mp_size_t qxn, mp_limb_t *rs2p, [Function]
mp_size_t rs2n, const mp_limb_t *s3p, mp_size_t s3n)
[This function is obsolete. Please call mpn_tdiv_qr instead for best performance.]

Divide {rs2p, rs2n} by {s3p, s3n}, and write the quotient at rlp, with the exception of the
most significant limb, which is returned. The remainder replaces the dividend at rs2p; it will
be s3n limbs long (i.e., as many limbs as the divisor).

In addition to an integer quotient, gxn fraction limbs are developed, and stored after the
integral limbs. For most usages, gxn will be zero.

It is required that rs2n is greater than or equal to s3n. It is required that the most significant
bit of the divisor is set.

If the quotient is not needed, pass rs2p + s3n as rlp. Aside from that special case, no overlap
between arguments is permitted.

Return the most significant limb of the quotient, either 0 or 1.

The area at rlp needs to be rs2n — s3n + gxn limbs large.

Chapter 8: Low-level Functions 61

mp_limb_t mpn_divrem_1 (mp_limb_t *rip, mp_size_t qxn, mp_limb_t *s2p, [Function]
mp_size_t s2n, mp_limb_t s31imb)
mp_limb_t mpn_divmod_1 (mp_limb_t *rip, mp_limb_t *s2p, mp_size_t s2n, [Macro]
mp_limb_t s31imb)
Divide {s2p, s2n} by s3limb, and write the quotient at rip. Return the remainder.

The integer quotient is written to {rip+qxn, s2n} and in addition gxn fraction limbs are
developed and written to {rlp, qxn}. Either or both s2n and gxn can be zero. For most
usages, gxn will be zero.

mpn_divmod_1 exists for upward source compatibility and is simply a macro calling mpn_
divrem_1 with a gqxn of 0.

The areas at rlp and s2p have to be identical or completely separate, not partially overlap-
ping.

mp_limb_t mpn_divexact_by3 (mp_limb_t *rp, mp_limb_t *sp, mp_size_t n) [Macro]
mp_limb_t mpn_divexact_by3c (mp_limb_t *rp, mp_limb_t *sp, [Function]
mp_size_t n, mp_limb_t carry)
Divide {sp, n} by 3, expecting it to divide exactly, and writing the result to {rp, n}. If 3
divides exactly, the return value is zero and the result is the quotient. If not, the return value
is non-zero and the result won’t be anything useful.

mpn_divexact_by3c takes an initial carry parameter, which can be the return value from
a previous call, so a large calculation can be done piece by piece from low to high. mpn_
divexact_by3 is simply a macro calling mpn_divexact_by3c with a 0 carry parameter.

These routines use a multiply-by-inverse and will be faster than mpn_divrem_1 on CPUs with
fast multiplication but slow division.

The source a, result g, size n, initial carry 7, and return value c satisfy cb™ +a — ¢ = 3q, where
b = 2GMP_NUMB_BITS The return c is always 0, 1 or 2, and the initial carry ¢ must also be 0,
1 or 2 (these are both borrows really). When ¢ = 0 clearly ¢ = (a —4)/3. When ¢ # 0, the
remainder (a —4) mod 3 is given by 3 — ¢, because b = 1 mod 3 (when mp_bits_per_limb is
even, which is always so currently).

mp_limb_t mpn_mod_1 (mp-_limb_t *s1p, mp_size_t s1n, mp_limb_t s21imb) [Function]
Divide {slp, sIn} by s2limb, and return the remainder. sIn can be zero.

mp_limb_t mpn_lshift (mp-limb_t *rp, const mp_limb_t *sp, mp_size_t n, [Function]
unsigned int count)
Shift {sp, n} left by count bits, and write the result to {rp, n}. The bits shifted out at the
left are returned in the least significant count bits of the return value (the rest of the return
value is zero).

count must be in the range 1 to mp_bits_per_limb—1. The regions {sp, n} and {rp, n} may
overlap, provided rp > sp.

This function is written in assembly for most CPUs.

mp_limb_t mpn_rshift (mp_limb_t *rp, const mp_limb_t *sp, mp_size_t n, [Function]
unsigned int count)
Shift {sp, n} right by count bits, and write the result to {rp, n}. The bits shifted out at the
right are returned in the most significant count bits of the return value (the rest of the return
value is zero).

62 MPIR 3.0.0

count must be in the range 1 to mp_bits_per_limb—1. The regions {sp, n} and {rp, n} may
overlap, provided rp < sp.

This function is written in assembly for most CPUs.

int mpn_cmp (const mp_limb_t *s1p, const mp_limb_t *s2p, mp_size_t n) [Function]
Compare {slp, n} and {s2p, n} and return a positive value if sI > s2, 0 if they are equal, or
a negative value if s1 < s2.

mp_size_t mpn_gcd (mp-limb_t *rp, mp_limb_t *s1p, mp_size_t s1n, [Function]
mp_limb_t *s2p, mp_size_t s2n)
Set {rp, retval} to the greatest common divisor of {slp, sIn} and {s2p, s2n}. The result can
be up to s2n limbs, the return value is the actual number produced. Both source operands
are destroyed.

{slp, sIn} must have at least as many bits as {s2p, s2n}. {s2p, s2n} must be odd. Both
operands must have non-zero most significant limbs. No overlap is permitted between {sIp,
sln} and {s2p, s2n}.

mp_limb_t mpn_gcd_1 (const mp_limb_t *s1p, mp_size_t s1n, mp_limb_t [Function]
521imb)
Return the greatest common divisor of {sIp, sIn} and s2limb. Both operands must be non-
Zero.

mp_size_t mpn_gcdext (mp_limb_t *gp, mp_limb_t *sp, mp_size_t *sn, [Function]
mp_limb_t *xp, mp_size_t xn, mp_limb_t *yp, mp_size_t yn)
Let U be defined by {xp, xn} and let V be defined by {yp, yn}.

Compute the greatest common divisor G of U and V. Compute a cofactor S such that
G = US + VT. The second cofactor T is not computed but can easily be obtained from
(G —US)/V (the division will be exact). It is required that U > V > 0.

S satisfies S =1 or |S| < V/(2G). S =0 if and only if V divides U (i.e., G = V).

Store G at gp and let the return value define its limb count. Store S at sp and let |*snl|
define its limb count. S can be negative; when this happens *sn will be negative. The areas
at gp and sp should each have room for xn 4+ 1 limbs.

The areas {xp, xn+ 1} and {yp, yn+ 1} are destroyed (i.e. the input operands plus an extra
limb past the end of each).

Compatibility note: MPIR versions 1.3,2.0 and GMP versions 4.3.0,4.3.1 defined S less
strictly. Earlier as well as later GMP releases define S as described here.

mp_size_t mpn_sqrtrem (mp_limb_t *rip, mp_limb_t *r2p, const [Function]
mp_limb_t *sp, mp_size_t n)
Compute the square root of {sp, n} and put the result at {rlp, [n/2]} and the remainder
at {r2p, retval}. r2p needs space for n limbs, but the return value indicates how many are
produced.

The most significant limb of {sp, n} must be non-zero. The areas {rlp, [n/2]} and {sp, n}
must be completely separate. The areas {r2p, n} and {sp, n} must be either identical or
completely separate.

If the remainder is not wanted then r2p can be NULL, and in this case the return value is zero
or non-zero according to whether the remainder would have been zero or non-zero.

Chapter 8: Low-level Functions 63

A return value of zero indicates a perfect square. See also mpz_perfect_square_p.

mp_size_t mpn_get_str (unsigned char *str, int base, mp_limb_t *s1p, [Function]
mp_size_t s1n)
Convert {slp, sIn} to a raw unsigned char array at str in base base, and return the number
of characters produced. There may be leading zeros in the string. The string is not in ASCII;
to convert it to printable format, add the ASCII codes for ‘0’ or ‘A’, depending on the base
and range. base can vary from 2 to 256.

The most significant limb of the input {sIp, sIn} must be non-zero. The input {slp, sin} is
clobbered, except when base is a power of 2, in which case it’s unchanged.

The area at str has to have space for the largest possible number represented by a sln long
limb array, plus one extra character.

mp_size_t mpn_set_str (mp_limb_t *rp, const unsigned char *str, size_t [Function]
strsize, int base)
Convert bytes {str,strsize} in the given base to limbs at rp.

str[0] is the most significant byte and str[strsize — 1] is the least significant. Each byte should
be a value in the range 0 to base — 1, not an ASCII character. base can vary from 2 to 256.

The return value is the number of limbs written to rp. If the most significant input byte is
non-zero then the high limb at rp will be non-zero, and only that exact number of limbs will
be required there.

If the most significant input byte is zero then there may be high zero limbs written to rp and
included in the return value.

strsize must be at least 1, and no overlap is permitted between {str,strsize} and the result
at rp.

mp_bitcnt_t mpn_scanO (const mp_limb_t *s1p, imp_bitcnt_t bit) [Function]
Scan slp from bit position bit for the next clear bit.

It is required that there be a clear bit within the area at sIp at or beyond bit position bit,
so that the function has something to return.

mp_bitcnt_t mpn_scanl (const mp_limb_t *s1p, mp_bitcnt_t bit) [Function]
Scan s1p from bit position bit for the next set bit.

It is required that there be a set bit within the area at sIp at or beyond bit position bit, so
that the function has something to return.

void mpn_random (mp_limb_t *rip, mp_size_t rin) [Function]

void mpn_random2 (mp_limb_t *rip, mp_size_t rin) [Function]
Generate a random number of length rin and store it at rlp. The most significant limb
is always non-zero. mpn_random generates uniformly distributed limb data, mpn_random?2
generates long strings of zeros and ones in the binary representation.

mpn_random?2 is intended for testing the correctness of the mpn routines.

These functions are obsolete. They will disappear from future MPIR releases.

void mpn_urandomb (mp_limb_t *rp, gmp_randstate_t state, mpir_ui n) [Function]
Generate a uniform random number of length n bits and store it at rp.

64 MPIR 3.0.0

This function interface is preliminary and may change in the future.

void mpn_urandomm (mp_limb_t *rp, gmp_randstate_t state, const [Function]
mp_limb_t *mp, mp_size_t n)
Generate a uniform random number modulo (mp,n) of length n limbs and store it at rp.

This function interface is preliminary and may change in the future.

void mpn_randomb (mp_limb_t *rp, gmp_randstate_t state, mp_size_t n) [Function]
Generate a random number of length n limbs and store it at rp. The most significant limb is
always non-zero.

This function interface is preliminary and may change in the future.

void mpn_rrandom (mp_limb_t *rp, gmp_randstate_t state, mp_size_t n) [Function]
Generate a random number of length n limbs and store it at rp. The most significant limb is
always non-zero. Generates long strings of zeros and ones in the binary representation and
is intended for testing the correctness of the mpn routines.

This function interface is preliminary and may change in the future.

mp_bitcnt_t mpn_popcount (const mp_limb_t *s1p, mp_size_t n) [Function]
Count the number of set bits in {sIp, n}.

mp_bitcnt_t mpn_hamdist (const mp_limb_t *s1p, const mp_limb_t *s2p, [Function]
mp_size_t n)
Compute the hamming distance between {slp, n} and {s2p, n}, which is the number of bit
positions where the two operands have different bit values.

int mpn_perfect_square_p (const mp_limb_t *s1p, mp_size_t n) [Function]
Return non-zero iff {sIp, n} is a perfect square.

void mpn_and_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t [Function]
*s2p, mp_size_t n)
Perform the bitwise logical and of {slp, n} and {s2p, n}, and write the result to {rp, n}.

void mpn_ior_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t [Function]
*s2p, mp_size_t n)
Perform the bitwise logical inclusive or of {slp, n} and {s2p, n}, and write the result to {rp,

n}.

void mpn_xor_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t [Function]
*s2p, mp_size_t n)
Perform the bitwise logical exclusive or of {slp, n} and {s2p, n}, and write the result to {rp,

n}.

void mpn_andn_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t [Function]
*s2p, mp_size_t n)
Perform the bitwise logical and of {slp, n} and the bitwise complement of {s2p, n}, and write
the result to {rp, n}.

Chapter 8: Low-level Functions 65

void mpn_iorn_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t [Function]
*s2p, mp_size_t n)
Perform the bitwise logical inclusive or of {sIp, n} and the bitwise complement of {s2p, n},
and write the result to {rp, n}.

void mpn_nand_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t [Function]
*s2p, mp_size_t n)
Perform the bitwise logical and of {sIp, n} and {s2p, n}, and write the bitwise complement
of the result to {rp, n}.

void mpn_nior_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t [Function]
*s2p, mp_size_t n)
Perform the bitwise logical inclusive or of {sIp, n} and {s2p, n}, and write the bitwise
complement of the result to {rp, n}.

void mpn_xnor_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t [Function]
*s2p, mp_size_t n)
Perform the bitwise logical exclusive or of {slp, n} and {s2p, n}, and write the bitwise
complement of the result to {rp, n}.

void mpn_com (mp-limb_t *rp, const mp_limb_t *sp, mp_size_t n) [Function]
Perform the bitwise complement of {sp, n}, and write the result to {rp, n}.

void mpn_copyi (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t n) [Function]
Copy from {slp, n} to {rp, n}, increasingly.

void mpn_copyd (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t n) [Function]
Copy from {slp, n} to {rp, n}, decreasingly.

void mpn_zero (mp-_limb_t *rp, mp_size_t n) [Function]
Zero {rp, n}.

8.1 Nails

Everything in this section is highly experimental and may disappear or be subject to incompat-
ible changes in a future version of MPIR.

N.B: Nails are currently disabled and not supported in MPIR. They may or may not return in
a future version of MPIR.

Nails are an experimental feature whereby a few bits are left unused at the top of each mp_limb_
t. This can significantly improve carry handling on some processors.

All the mpn functions accepting limb data will expect the nail bits to be zero on entry, and will
return data with the nails similarly all zero. This applies both to limb vectors and to single limb
arguments.

Nails can be enabled by configuring with ‘--enable-nails’. By default the number of bits will
be chosen according to what suits the host processor, but a particular number can be selected
with ‘--enable-nails=N’.

At the mpn level, a nail build is neither source nor binary compatible with a non-nail build,
strictly speaking. But programs acting on limbs only through the mpn functions are likely to
work equally well with either build, and judicious use of the definitions below should make any
program compatible with either build, at the source level.

66 MPIR 3.0.0

For the higher level routines, meaning mpz etc, a nail build should be fully source and binary
compatible with a non-nail build.

GMP_NAIL_BITS [Macro]
GMP_NUMB_BITS [Macro]
GMP_LIMB_BITS [Macro]

GMP_NAIL_BITS is the number of nail bits, or 0 when nails are not in use. GMP_NUMB_BITS
is the number of data bits in a limb. GMP_LIMB_BITS is the total number of bits in an
mp_limb_t. In all cases

GMP_LIMB_BITS == GMP_NAIL_BITS + GMP_NUMB_BITS

GMP_NAIL_MASK [Macro]

GMP_NUMB_MASK [Macro]
Bit masks for the nail and number parts of a limb. GMP_NAIL_MASK is 0 when nails are not
in use.

GMP_NAIL_MASK is not often needed, since the nail part can be obtained with x >> GMP_NUMB_
BITS, and that means one less large constant, which can help various RISC chips.

GMP_NUMB_MAX [Macro]
The maximum value that can be stored in the number part of a limb. This is the same as
GMP_NUMB_MASK, but can be used for clarity when doing comparisons rather than bit-wise
operations.

The term “nails” comes from finger or toe nails, which are at the ends of a limb (arm or leg).
“numb” is short for number, but is also how the developers felt after trying for a long time to
come up with sensible names for these things.

In the future (the distant future most likely) a non-zero nail might be permitted, giving non-
unique representations for numbers in a limb vector. This would help vector processors since
carries would only ever need to propagate one or two limbs.

Chapter 9: Random Number Functions 67

9 Random Number Functions

Sequences of pseudo-random numbers in MPIR are generated using a variable of type gmp_
randstate_t, which holds an algorithm selection and a current state. Such a variable must be
initialized by a call to one of the gmp_randinit functions, and can be seeded with one of the
gmp_randseed functions.

The functions actually generating random numbers are described in Section 5.13 [Integer Ran-
dom Numbers|, page 41, and Section 7.8 [Miscellaneous Float Functions|, page 56.

The older style random number functions don’t accept a gmp_randstate_t parameter but in-
stead share a global variable of that type. They use a default algorithm and are currently
not seeded (though perhaps that will change in the future). The new functions accepting a
gmp_randstate_t are recommended for applications that care about randomness.

9.1 Random State Initialization

void gmp_randinit_default (gmp-randstate_t state) [Function]
Initialize state with a default algorithm. This will be a compromise between speed and
randomness, and is recommended for applications with no special requirements. Currently
this is gmp_randinit_mt.

void gmp_randinit_mt (gmp_randstate_t state) [Function]
Initialize state for a Mersenne Twister algorithm. This algorithm is fast and has good ran-
domness properties.

void gmp_randinit_lc_2exp (gmp-randstate_t state, mpz_t a, mpir_ui c, [Function]
mp_bitent_t m2exp)
Initialize state with a linear congruential algorithm X = (aX + ¢) mod 2m2¢*P.

The low bits of X in this algorithm are not very random. The least significant bit will have
a period no more than 2, and the second bit no more than 4, etc. For this reason only the
high half of each X is actually used.

When a random number of more than m2exp/2 bits is to be generated, multiple iterations
of the recurrence are used and the results concatenated.

int gmp_randinit_lc_2exp_size (gmp-_randstate_t state, mp_bitcnt_t [Function]
size)
Initialize state for a linear congruential algorithm as per gmp_randinit_lc_2exp. a, ¢ and
m2exp are selected from a table, chosen so that size bits (or more) of each X will be used,
ie. m2exp/2 > size.

If successful the return value is non-zero. If size is bigger than the table data provides then
the return value is zero. The maximum size currently supported is 128.

int gmp_randinit_set (gmp-randstate_t rop, gmp-randstate_t op) [Function]
Initialize rop with a copy of the algorithm and state from op.

void gmp_randclear (gmp-randstate_t state) [Function]
Free all memory occupied by state.

68 MPIR 3.0.0

9.2 Random State Seeding

void gmp_randseed (gmp-randstate_t state, mpz_t seed) [Function]
void gmp_randseed_ui (gmp_randstate_t state, mpir_ui seed) [Function]
Set an initial seed value into state.

The size of a seed determines how many different sequences of random numbers that it’s
possible to generate. The “quality” of the seed is the randomness of a given seed compared
to the previous seed used, and this affects the randomness of separate number sequences. The
method for choosing a seed is critical if the generated numbers are to be used for important
applications, such as generating cryptographic keys.

Traditionally the system time has been used to seed, but care needs to be taken with this.
If an application seeds often and the resolution of the system clock is low, then the same
sequence of numbers might be repeated. Also, the system time is quite easy to guess, so if
unpredictability is required then it should definitely not be the only source for the seed value.
On some systems there’s a special device /dev/random which provides random data better
suited for use as a seed.

9.3 Random State Miscellaneous

mpir_ui gmp_urandomb_ui (gmp-_randstate_t state, mpir_ui n) [Function]
Return a uniformly distributed random number of n bits, ie. in the range 0 to 2™ — 1 inclusive.
n must be less than or equal to the number of bits in an mpir_ui.

mpir_ui gmp_urandomm_ui (gmp-_randstate_t state, mpir_ui n) [Function]
Return a uniformly distributed random number in the range 0 to n — 1, inclusive.

Chapter 10: Formatted Output 69

10 Formatted Output

10.1 Format Strings

gmp_printf and friends accept format strings similar to the standard C printf (see Section
“Formatted Output” in The GNU C Library Reference Manual). A format specification is of
the form

% [flags] [width] [.[precision]] [type] conv

MPIR adds types ‘2’, ‘Q’ and ‘F’ for mpz_t, mpq_t and mpf_t respectively, ‘M’ for mp_limb_t,
and ‘N’ for an mp_limb_t array. ‘Z’, ‘Q’, ‘M’ and ‘N’ behave like integers. ‘Q’ will print a ‘/’ and
a denominator, if needed. ‘F’ behaves like a float. For example,

mpz_t z;
gmp_printf ("%s is an mpz %Zd\n", "here", z);

mpq_t q;
gmp_printf ("a hex rational: %#40Qx\n", q);

mpf_t f;
int n;
gmp_printf ("fixed point mpf %.*Ff with %d digits\n", n, f, n);

mp_limb_t 1;
gmp_printf ("limb %Mu\n", limb);

const mp_limb_t *ptr;
mp_size_t size;
gmp_printf ("limb array %Nx\n", ptr, size);

For ‘N’ the limbs are expected least significant first, as per the mpn functions (see Chapter 8
[Low-level Functions], page 58). A negative size can be given to print the value as a negative.

All the standard C printf types behave the same as the C library printf, and can be freely
intermixed with the MPIR extensions. In the current implementation the standard parts of the
format string are simply handed to printf and only the MPIR extensions handled directly.

[

The flags accepted are as follows. GLIBC style
MPIR types), and only if the C library supports it.

is only for the standard C types (not the

pad with zeros (rather than spaces)
show the base with ‘0x’, ‘0X’ or ‘0’
always show a sign

+ # O

space) show a space or a ‘=’ sign
group digits, GLIBC style (not MPIR types)

-

The optional width and precision can be given as a number within the format string, or as a ‘¥’
to take an extra parameter of type int, the same as the standard printf.

The standard types accepted are as follows. ‘h’ and ‘1’ are portable, the rest will depend on the
compiler (or include files) for the type and the C library for the output.

h short
hh char

70 MPIR 3.0.0

J intmax_t or uintmax_t

(=]

long or wchar_t
11 long long

L long double

q quad_t or u_quad_t
t ptrdiff_t

z size_t

The MPIR types are

mpf_t, float conversions

mpq_t, integer conversions
mp_limb_t, integer conversions
mp_limb_t array, integer conversions

N = 209"

mpz_t, integer conversions

The conversions accepted are as follows. ‘a’ and ‘A’ are always supported for mpf_t but depend
on the C library for standard C float types. ‘m” and ‘p’ depend on the C library.

al hex floats, C99 style

c character

d decimal integer

eE scientific format float

f fixed point float

i same as d

gaG fixed or scientific float

m strerror string, GLIBC style
n store characters written so far
) octal integer

P pointer

s string

u unsigned integer

x X hex integer

‘o’, ‘x’ and ‘X’ are unsigned for the standard C types, but for types ‘Z’, ‘Q’ and ‘N’ they are
signed. ‘u’ is not meaningful for ‘Z’, ‘Q’ and ‘N’.

‘M’ is a proxy for the C library ‘1’ or ‘L’, according to the size of mp_limb_t. Unsigned conver-
sions will be usual, but a signed conversion can be used and will interpret the value as a twos
complement negative.

‘n’ can be used with any type, even the MPIR types.

Other types or conversions that might be accepted by the C library printf cannot be used
through gmp_printf, this includes for instance extensions registered with GLIBC register_
printf_function. Also currently there’s no support for POSIX ‘$’ style numbered arguments
(perhaps this will be added in the future).

The precision field has it’s usual meaning for integer ‘Z’ and float ‘F’ types, but is currently
undefined for ‘Q’ and should not be used with that.

mpf_t conversions only ever generate as many digits as can be accurately represented by the
operand, the same as mpf_get_str does. Zeros will be used if necessary to pad to the requested
precision. This happens even for an ‘f’ conversion of an mpf_t which is an integer, for instance

Chapter 10: Formatted Output 71

21024 in an mpf_t of 128 bits precision will only produce about 40 digits, then pad with zeros

to the decimal point. An empty precision field like ‘% .Fe’ or ‘%.Ff’ can be used to specifically
request just the significant digits.

The decimal point character (or string) is taken from the current locale settings on systems which
provide localeconv (see Section “Locales and Internationalization” in The GNU C Library
Reference Manual). The C library will normally do the same for standard float output.

The format string is only interpreted as plain chars, multibyte characters are not recognised.
Perhaps this will change in the future.

10.2 Functions

Each of the following functions is similar to the corresponding C library function. The basic
printf forms take a variable argument list. The vprintf forms take an argument pointer, see
Section “Variadic Functions” in The GNU C Library Reference Manual, or ‘man 3 va_start’.

It should be emphasised that if a format string is invalid, or the arguments don’t match what
the format specifies, then the behaviour of any of these functions will be unpredictable. GCC
format string checking is not available, since it doesn’t recognise the MPIR, extensions.

The file based functions gmp_printf and gmp_fprintf will return —1 to indicate a write error.
Output is not “atomic”, so partial output may be produced if a write error occurs. All the
functions can return —1 if the C library printf variant in use returns —1, but this shouldn’t
normally occur.

int gmp_printf (const char *fmt, ...) [Function]

int gmp_vprintf (const char *fmt, va_list ap) [Function]
Print to the standard output stdout. Return the number of characters written, or —1 if an
error occurred.

int gmp_fprintf (FILE *fp, const char *fmt, ...) [Function]
int gmp_vfprintf (FILE *fp, const char *fmt, va_list ap) [Function]
Print to the stream fp. Return the number of characters written, or —1 if an error occurred.

int gmp_sprintf (char *buf, const char *fmt, ...) [Function]

int gmp_vsprintf (char *buf, const char *fmt, va_list ap) [Function]
Form a null-terminated string in buf. Return the number of characters written, excluding
the terminating null.

No overlap is permitted between the space at buf and the string fmt.

These functions are not recommended, since there’s no protection against exceeding the space
available at buf.

int gmp_snprintf (char *buf, size_t size, const char *fmt, ...) [Function]

int gmp_vsnprintf (char *buf, size_t size, const char *fmt, va_list ap) [Function]
Form a null-terminated string in buf. No more than size bytes will be written. To get the
full output, size must be enough for the string and null-terminator.

The return value is the total number of characters which ought to have been produced,
excluding the terminating null. If retval > size then the actual output has been truncated to
the first size — 1 characters, and a null appended.

No overlap is permitted between the region {buf;size} and the fmt string.

792 MPIR 3.0.0

Notice the return value is in ISO C99 snprintf style. This is so even if the C library
vsnprintf is the older GLIBC 2.0.x style.

int gmp_asprintf (char **pp, const char *fmt, ...) [Function]

int gmp_vasprintf (char **pp, const char *fmt, va_list ap) [Function]
Form a null-terminated string in a block of memory obtained from the current memory
allocation function (see Chapter 14 [Custom Allocation|, page 106). The block will be the
size of the string and null-terminator. The address of the block in stored to *pp. The return
value is the number of characters produced, excluding the null-terminator.

Unlike the C library asprintf, gmp_asprintf doesn’t return —1 if there’s no more memory
available, it lets the current allocation function handle that.

int gmp_obstack_printf (struct obstack *ob, const char *fmt, ...) [Function]

int gmp_obstack_vprintf (struct obstack *ob, const char *fmt, va_list ap) [Function]
Append to the current object in ob. The return value is the number of characters written.
A null-terminator is not written.

fmt cannot be within the current object in ob, since that object might move as it grows.

These functions are available only when the C library provides the obstack feature, which
probably means only on GNU systems, see Section “Obstacks” in The GNU C Library Ref-
erence Manual.

10.3 C++ Formatted Output

The following functions are provided in libmpirxx (see Section 3.1 [Headers and Libraries],
page 16), which is built if C++ support is enabled (see Section 2.1 [Build Options|, page 3).
Prototypes are available from <mpir.h>.

ostream& operator<< (ostream& stream, mpz_t op) [Function]
Print op to stream, using its ios formatting settings. ios: :width is reset to 0 after output,
the same as the standard ostream operator<< routines do.

In hex or octal, op is printed as a signed number, the same as for decimal. This is unlike the
standard operator<< routines on int etc, which instead give twos complement.

ostream& operator<< (ostream& stream, mpq-t op) [Function]
Print op to stream, using its ios formatting settings. ios::width is reset to 0 after output,
the same as the standard ostream operator<< routines do.

Output will be a fraction like ‘5/9’, or if the denominator is 1 then just a plain integer like
‘123,

In hex or octal, op is printed as a signed value, the same as for decimal. If ios: :showbase is
set then a base indicator is shown on both the numerator and denominator (if the denominator
is required).

ostream& operator<< (ostream& stream, mpf t op) [Function]
Print op to stream, using its ios formatting settings. ios: :width is reset to 0 after output,
the same as the standard ostream operator<< routines do.

The decimal point follows the standard library float operator<<, which on recent systems
means the std: :locale imbued on stream.

Chapter 10: Formatted Output 73

Hex and octal are supported, unlike the standard operator<< on double. The mantissa will
be in hex or octal, the exponent will be in decimal. For hex the exponent delimiter is an ‘@’.
This is as per mpf_out_str.

ios::showbase is supported, and will put a base on the mantissa, for example hex ‘0x1.8’ or
‘0x0.8’, or octal ‘01.4’ or ‘00.4’. This last form is slightly strange, but at least differentiates
itself from decimal.

These operators mean that MPIR types can be printed in the usual C++ way, for example,

mpz_t z;
int n;

cout << "iteration " << n << " value " << z << "\n";

But note that ostream output (and istream input, see Section 11.3 [C++ Formatted Input],
page 76) is the only overloading available for the MPIR types and that for instance using + with
an mpz_t will have unpredictable results. For classes with overloading, see Chapter 12 [C++
Class Interface], page 78.

74 MPIR 3.0.0

11 Formatted Input

11.1 Formatted Input Strings

gmp_scanf and friends accept format strings similar to the standard C scanf (see Section
“Formatted Input” in The GNU C Library Reference Manual). A format specification is of the
form

% [flags] [width] [typel conv

MPIR adds types ‘Z’, ‘Q" and ‘F’ for mpz_t, mpq_t and mpf_t respectively. ‘Z’ and ‘Q’ behave
like integers. ‘Q’ will read a ‘/’ and a denominator, if present. ‘F’ behaves like a float.

MPIR variables don’t require an & when passed to gmp_scanf, since they’re already “call-by-
reference”. For example,

/* to read say "a(b5) = 1234" x/

int n;

mpz_t z;

gmp_scanf ("a(%d) = %Zd\n", &n, z);

mpq_t ql, q92;
gmp_sscanf ("0377 + 0x10/0x11", "%Qi + %Qi", ql, g2);

/* to read say "topleft (1.55,-2.66)" */
mpf_t x, y;

char buf[32];

gmp_scanf ("%31s (%Ff,%Ff)", buf, x, y);

All the standard C scanf types behave the same as in the C library scanf, and can be freely
intermixed with the MPIR extensions. In the current implementation the standard parts of the
format string are simply handed to scanf and only the MPIR extensions handled directly.

¢

The flags accepted are as follows. ‘a’ and <*’ will depend on support from the C library, and *’

cannot be used with MPIR types.

* read but don’t store
a allocate a buffer (string conversions)
’ grouped digits, GLIBC style (not MPIR types)

The standard types accepted are as follows. ‘h’ and ‘1’ are portable, the rest will depend on the
compiler (or include files) for the type and the C library for the input.

h short

hh char

J intmax_t or uintmax_t

1 long int, double or wchar_t

11 long long

L long double

q quad_t or u_quad_t
t ptrdiff_t

z size_t

The MPIR types are

Chapter 11: Formatted Input 75

F mpf _t, float conversions
Q mpq_t, integer conversions
Z mpz_t, integer conversions

The conversions accepted are as follows. ‘p’ and ‘[’ will depend on support from the C library,
the rest are standard.

c character or characters

d decimal integer

e Ef g float

G

i integer with base indicator
n characters read so far

o octal integer

P pointer

s string of non-whitespace characters
u decimal integer

x X hex integer

L string of characters in a set

[P}

e’, ‘B, ‘f7) ‘g’ and ‘G’ are identical, they all read either fixed point or scientific format, and
either upper or lower case ‘e’ for the exponent in scientific format.

C99 style hex float format (printf %a, see Section 10.1 [Formatted Output Strings|, page 69) is
always accepted for mpf_t, but for the standard float types it will depend on the C library.

‘x” and ‘X’ are identical, both accept both upper and lower case hexadecimal.

[A

o', ‘v, ‘x’” and ‘X’ all read positive or negative values. For the standard C types these are
described as “unsigned” conversions, but that merely affects certain overflow handling, negatives
are still allowed (per strtoul, see Section “Parsing of Integers” in The GNU C Library Reference
Manual). For MPIR types there are no overflows, so ‘d’ and ‘u’ are identical.

‘Q’ type reads the numerator and (optional) denominator as given. If the value might not be in
canonical form then mpq_canonicalize must be called before using it in any calculations (see
Chapter 6 [Rational Number Functions|, page 46).

‘Qi’” will read a base specification separately for the numerator and denominator. For example
‘0x10/11’ would be 16/11, whereas ‘0x10/0x11’ would be 16/17.

‘n’ can be used with any of the types above, even the MPIR types. ‘*’ to suppress assignment
is allowed, though in that case it would do nothing at all.

Other conversions or types that might be accepted by the C library scanf cannot be used
through gmp_scanf.

Whitespace is read and discarded before a field, except for ‘c’ and ‘[’ conversions.

For float conversions, the decimal point character (or string) expected is taken from the current
locale settings on systems which provide localeconv (see Section “Locales and International-
ization” in The GNU C Library Reference Manual). The C library will normally do the same
for standard float input.

The format string is only interpreted as plain chars, multibyte characters are not recognised.
Perhaps this will change in the future.

76 MPIR 3.0.0

11.2 Formatted Input Functions

Each of the following functions is similar to the corresponding C library function. The plain
scanf forms take a variable argument list. The vscanf forms take an argument pointer, see
Section “Variadic Functions” in The GNU C Library Reference Manual, or ‘man 3 va_start’.

It should be emphasised that if a format string is invalid, or the arguments don’t match what
the format specifies, then the behaviour of any of these functions will be unpredictable. GCC
format string checking is not available, since it doesn’t recognise the MPIR, extensions.

No overlap is permitted between the fmt string and any of the results produced.
int gmp_scanf (const char *fmt, ...) [Function]

int gmp_vscanf (const char *fmt, va_list ap) [Function]
Read from the standard input stdin.

int gmp_fscanf (FILE *fp, const char *fmt, . ..) [Function]

int gmp_vfscanf (FILE *fp, const char *fmt, va_list ap) [Function]
Read from the stream fp.

int gmp_sscanf (const char *s, const char *fmt, ...) [Function]

int gmp_vsscanf (const char *s, const char *fmt, va_list ap) [Function]

Read from a null-terminated string s.

The return value from each of these functions is the same as the standard C99 scanf, namely
the number of fields successfully parsed and stored. ‘%n’ fields and fields read but suppressed by
‘*” don’t count towards the return value.

If end of input (or a file error) is reached before a character for a field or a literal, and if
no previous non-suppressed fields have matched, then the return value is EOF instead of 0. A
whitespace character in the format string is only an optional match and doesn’t induce an EOF
in this fashion. Leading whitespace read and discarded for a field don’t count as characters for
that field.

For the MPIR types, input parsing follows C99 rules, namely one character of lookahead is used
and characters are read while they continue to meet the format requirements. If this doesn’t
provide a complete number then the function terminates, with that field not stored nor counted
towards the return value. For instance with mpf_t an input ‘1.23e-XYZ’ would be read up to
the ‘X’ and that character pushed back since it’s not a digit. The string ‘1.23e-" would then be
considered invalid since an ‘e’ must be followed by at least one digit.

For the standard C types, in the current implementation MPIR calls the C library scanf func-
tions, which might have looser rules about what constitutes a valid input.

Note that gmp_sscanf is the same as gmp_fscanf and only does one character of lookahead
when parsing. Although clearly it could look at its entire input, it is deliberately made identical
to gmp_fscanf, the same way C99 sscanf is the same as fscanf.

11.3 C++ Formatted Input

The following functions are provided in libmpirxx (see Section 3.1 [Headers and Libraries],
page 16), which is built only if C++ support is enabled (see Section 2.1 [Build Options|, page 3).
Prototypes are available from <mpir.h>.

istream& operator>> (istreamé& stream, mpz_t rop) [Function]
Read rop from stream, using its ios formatting settings.

Chapter 11: Formatted Input 7

istream& operator>> (istreamds stream, mpq-t rop) [Function)]
An integer like ‘123’ will be read, or a fraction like ‘6/9’. No whitespace is allowed around
the ¢/’. If the fraction is not in canonical form then mpq_canonicalize must be called (see
Chapter 6 [Rational Number Functions|, page 46) before operating on it.

As per integer input, an ‘0’ or ‘0x’ base indicator is read when none of ios::dec, ios::oct
or ios::hex are set. This is done separately for numerator and denominator, so that for
instance ‘0x10/11 is 16/11 and ‘0x10/0x11’ is 16/17.

istream& operator>> (istream& stream, mpf_t rop) [Function]
Read rop from stream, using its ios formatting settings.

Hex or octal floats are not supported, but might be in the future, or perhaps it’s best to
accept only what the standard float operator>> does.

Note that digit grouping specified by the istream locale is currently not accepted. Perhaps this
will change in the future.

These operators mean that MPIR types can be read in the usual C++ way, for example,

mpz_t z;

cin >> z;

But note that istream input (and ostream output, see Section 10.3 [C++ Formatted Output],
page 72) is the only overloading available for the MPIR types and that for instance using + with
an mpz_t will have unpredictable results. For classes with overloading, see Chapter 12 [C++
Class Interface], page 78.

78 MPIR 3.0.0

12 C++ Class Interface

This chapter describes the C++ class based interface to MPIR.

All MPIR C language types and functions can be used in C++ programs, since mpir.h has
extern "C" qualifiers, but the class interface offers overloaded functions and operators which
may be more convenient.

Due to the implementation of this interface, a reasonably recent C++ compiler is required, one
supporting namespaces, partial specialization of templates and member templates. For GCC
this means version 2.91 or later.

Everything described in this chapter is to be considered preliminary and might be subject to
incompatible changes if some unforeseen difficulty reveals itself.

12.1 C++ Interface General

All the C++ classes and functions are available with
#include <mpirxx.h>

Programs should be linked with the 1ibmpirxx and libmpir libraries. For example,
g++ mycxxprog.cc —lmpirxx -lmpir

The classes defined are

mpz_class [Class]
mpq_class [Class]
mpf_class [Class]

The standard operators and various standard functions are overloaded to allow arithmetic with
these classes. For example,

int
main (void)
{
mpz_class a, b, c;
a = 1234,
b = "-5678";
c = atb;

cout << "sum is " << ¢ << "\n";
cout << "absolute value is " << abs(c) << "\n";

return O;

¥

An important feature of the implementation is that an expression like a=b+c results in a single
call to the corresponding mpz_add, without using a temporary for the b+c part. Expressions
which by their nature imply intermediate values, like a=b*c+d*e, still use temporaries though.

The classes can be freely intermixed in expressions, as can the classes and the standard types
mpir_si, mpir_ui and double. Smaller types like int or float can also be intermixed, since
C++ will promote them.

Note that bool is not accepted directly, but must be explicitly cast to an int first. This is
because C++ will automatically convert any pointer to a bool, so if MPIR accepted bool it

Chapter 12: C++ Class Interface 79

would make all sorts of invalid class and pointer combinations compile but almost certainly not
do anything sensible.

Conversions back from the classes to standard C++ types aren’t done automatically, instead
member functions like get_si are provided (see the following sections for details).

Also there are no automatic conversions from the classes to the corresponding MPIR C types,
instead a reference to the underlying C object can be obtained with the following functions,

mpz_t mpz_class::get_mpz_t () [Function]
mpq_t mpq_class::get_mpq_t () [Function]
mpf_t mpf_class::get_mpf_t () [Function]
These can be used to call a C function which doesn’t have a C++ class interface. For example
to set a to the GCD of b and c,

mpz_class a, b, c;

mpz_gcd (a.get_mpz_t(), b.get_mpz_t(), c.get_mpz_t());

In the other direction, a class can be initialized from the corresponding MPIR C type, or assigned
to if an explicit constructor is used. In both cases this makes a copy of the value, it doesn’t
create any sort of association. For example,

mpz_t z;

// ... init and calculate z ...
mpz_class x(z);

mpz_class y;

y = mpz_class (z);

There are no namespace setups in mpirxx.h, all types and functions are simply put into the
global namespace. This is what mpir.h has done in the past, and continues to do for compat-
ibility. The extras provided by mpirxx.h follow MPIR naming conventions and are unlikely to
clash with anything.

12.2 C++ Interface Integers

void mpz_class::mpz_class (type n) [Function]
Construct an mpz_class. All the standard C++ types may be used long double, and all
the MPIR C++ classes can be used. Any necessary conversion follows the corresponding
C function, for example double follows mpz_set_d (see Section 5.2 [Assigning Integers],
page 30).

void mpz_class: :mpz_class (mpz-t z) [Function]
Construct an mpz_class from an mpz_t. The value in z is copied into the new mpz_class,
there won’t be any permanent association between it and z.

void mpz_class: :mpz_class (const char *s) [Function]
void mpz_class: :mpz_class (const char *s, int base = () [Function]
void mpz_class: :mpz_class (const string& s) [Function]
void mpz_class: :mpz_class (const string& s, int base = 0) [Function]

Construct an mpz_class converted from a string using mpz_set_str (see Section 5.2 [As-
signing Integers|, page 30).

If the string is not a valid integer, an std::invalid_argument exception is thrown. The
same applies to operator=.

80 MPIR 3.0.0

mpz_class operator"" _mpz (const char *str) [Function]
With C++11 compilers, integers can be constructed with the syntax 123_mpz which is equiv-
alent to mpz_class("123").

mpz_class operator/ (mpz_class a, mpz_class d) [Function]

mpz_class operator}, (mpz_class a, mpz_class d) [Function]
Divisions involving mpz_class round towards zero, as per the mpz_tdiv_q and mpz_tdiv_r
functions (see Section 5.6 [Integer Division], page 33). This is the same as the C99 / and %
operators.

The mpz_fdiv... or mpz_cdiv... functions can always be called directly if desired. For
example,

mpz_class q, a, d;

mpz_fdiv_q (q.get_mpz_t(), a.get_mpz_t(), d.get_mpz_t());

mpz_class abs (mpz_class op1) Function
int cmp (mpz_class opl, type op2) Function
int cmp (type opl, mpz_class op2) Function
bool mpz_class::fits_sint_p (void) Function
bool mpz_class::fits_slong_p (void) Function
bool mpz_class::fits_sshort_p (void) Function
bool mpz_class::fits_uint_p (void) Function
bool mpz_class::fits_ulong_p (void) Function
bool mpz_class::fits_ushort_p (void) Function

mpir_si mpz_class::get_si (void) Function
string mpz_class::get_str (int base = 10) Function
mpir_ui mpz_class::get_ui (void) Function
int mpz_class::set_str (const char *str, int base) Function
int mpz_class::set_str (const string& str, int base) Function
int sgn (mpz-class op) Function
mpz_class sqrt (mpz_class op) Function
void mpz_class::swap (mpz-class& op) Function
void swap (mpz_class& opl, mpz_class& op2) Function

[]
[]
[]
[]
[]
[]
[]
Function
double mpz_class::get_d (void) [Function]
[]
[]
[]
[]
[]
[]
[]
[]
[]

These functions provide a C++ class interface to the corresponding MPIR, C routines.

cmp can be used with any of the classes or the standard C++ types, except long double.

Overloaded operators for combinations of mpz_class and double are provided for completeness,
but it should be noted that if the given double is not an integer then the way any rounding is
done is currently unspecified. The rounding might take place at the start, in the middle, or at
the end of the operation, and it might change in the future.

Conversions between mpz_class and double, however, are defined to follow the corresponding
C functions mpz_get_d and mpz_set_d. And comparisons are always made exactly, as per
mpz_cmp_d.

12.3 C++ Interface Rationals

In all the following constructors, if a fraction is given then it should be in canonical form, or if
not then mpq_class: :canonicalize called.

Chapter 12: C++ Class Interface 81

void mpq_class: :mpq_class (type op) [Function]

void mpq_class: :mpq_class (integer num, integer den) [Function]
Construct an mpq_class. The initial value can be a single value of any type, or a pair of
integers (mpz_class or standard C++ integer types) representing a fraction, except that long
double is not supported. For example,

mpq_class q (99);
mpq_class q (1.75);
mpq_class q (1, 3);

void mpq_class::mpq_class (mpq-t q) [Function]
Construct an mpq_class from an mpq_t. The value in q is copied into the new mpq_class,
there won’t be any permanent association between it and q.

void mpq_class::mpq_class (const char *s) [Function]

void mpq_class::mpq_class (const char *s, int base = 0) [Function]

void mpq_class::mpq_class (const string& s) [Function]

void mpq_class::mpq_class (const string& s, int base = 0) [Function]
Construct an mpq_class converted from a string using mpq_set_str (see Section 6.1 [Initial-
izing Rationals|, page 46).

If the string is not a valid rational, an std::invalid_argument exception is thrown. The
same applies to operator=.

mpq_class operator"" _mpq (const char *str) [Function]
With C++11 compilers, integral rationals can be constructed with the syntax 123_mpq which
is equivalent to mpq_class(123_mpz). Other rationals can be built as -1_mpq/2 or Oxb_
mpq/123456_mpz.

void mpq_class::canonicalize () [Function]
Put an mpq_class into canonical form, as per Chapter 6 [Rational Number Functions],
page 46. All arithmetic operators require their operands in canonical form, and will return
results in canonical form.

mpq_class abs (mpq-class op) Function
int cmp (mpgq-class op1, type op2) Function
int cmp (type opl, mpq_class op2) Function
double mpq_class::get_d (void) Function

[]
[|
Funcion)
string mpq_class::get_str (int base = 10) [Function]
[]
[}
[}
[]
[]

int mpq_class::set_str (const char *str, int base) Function
int mpq_class::set_str (const string& str, int base) Function
int sgn (mpq-class op) Function
void mpq_class::swap (mpgq-class& op) Function
void swap (mpq-class& opl, mpq-class& op2) Function

These functions provide a C++ class interface to the corresponding MPIR C routines.

cmp can be used with any of the classes or the standard C++ types, except long double.

mpz_class& mpq_class::get_num () [Function]

mpz_class& mpq_class::get_den () [Function]
Get a reference to an mpz_class which is the numerator or denominator of an mpq_class.
This can be used both for read and write access. If the object returned is modified, it modifies
the original mpq_class.

82 MPIR 3.0.0

If direct manipulation might produce a non-canonical value, then mpq_class: :canonicalize
must be called before further operations.

mpz_t mpq_class::get_num_mpz_t () [Function]

mpz_t mpq_class::get_den_mpz_t () [Function]
Get a reference to the underlying mpz_t numerator or denominator of an mpq_class. This
can be passed to C functions expecting an mpz_t. Any modifications made to the mpz_t will
modify the original mpq_class.

If direct manipulation might produce a non-canonical value, then mpq_class: :canonicalize
must be called before further operations.

istream& operator>> (istreamé& stream, mpq_class& rop); [Function]
Read rop from stream, using its ios formatting settings, the same as mpq_t operator>> (see
Section 11.3 [C++ Formatted Input|, page 76).

If the rop read might not be in canonical form then mpq_class::canonicalize must be

called.

12.4 C++ Interface Floats

When an expression requires the use of temporary intermediate mpf_class values, like
f=gxh+x*y, those temporaries will have the same precision as the destination f. Explicit con-
structors can be used if this doesn’t suit.

mpf_class: :mpf_class (type op) [Function]

mpf_class: :mpf_class (type op, mpir_ui prec) [Function]
Construct an mpf_class. Any standard C++ type can be used, except long double, and any
of the MPIR C++ classes can be used.

If prec is given, the initial precision is that value, in bits. If prec is not given, then the
initial precision is determined by the type of op given. An mpz_class, mpq_class, or C++
builtin type will give the default mpf precision (see Section 7.1 [Initializing Floats], page 50).
An mpf_class or expression will give the precision of that value. The precision of a binary
expression is the higher of the two operands.

mpf_class £(1.5); // default precision

mpf_class £(1.5, 500); // 500 bits (at least)

mpf_class f(x); // precision of x

mpf_class f(abs(x)); // precision of x

mpf_class f(-g, 1000); // 1000 bits (at least)

mpf_class f(x+y); // greater of precisions of x and y

void mpf_class: :mpf_class (const char *s) [Function]
void mpf_class: :mpf_class (const char *s, mpir_ui prec, int base = 0) [Function]
void mpf_class: :mpf_class (const string& s) [Function]
void mpf_class::mpf_class (const string& s, mpir_ui prec, int base = 0) [Function]

Construct an mpf_class converted from a string using mpf_set_str (see Section 7.2 [As-
signing Floats|, page 52). If prec is given, the initial precision is that value, in bits. If not,
the default mpf precision (see Section 7.1 [Initializing Floats|, page 50) is used.

If the string is not a valid float, an std: :invalid_argument exception is thrown. The same
applies to operator=.

Chapter 12: C++ Class Interface 83

mpf_class operator"" _mpf (const char *str) [Function]

With C++11 compilers, floats can be constructed with the syntax 1.23e-1_mpf which is
equivalent to mpf_class("1.23e-1").

mpf_class& mpf_class: :operator= (type op) [Function]

mpf_class abs (mpf._class op)
mpf_class ceil (mpf.class op)

Convert and store the given op value to an mpf_class object. The same types are accepted
as for the constructors above.

Note that operator= only stores a new value, it doesn’t copy or change the precision of the
destination, instead the value is truncated if necessary. This is the same as mpf_set etc.
Note in particular this means for mpf_class a copy constructor is not the same as a default
constructor plus assignment.

mpf_class x (y); // x created with precision of y
mpf_class x; // x created with default precision
X =y, // value truncated to that precision

Applications using templated code may need to be careful about the assumptions the code
makes in this area, when working with mpf_class values of various different or non-default
precisions. For instance implementations of the standard complex template have been seen
in both styles above, though of course complex is normally only actually specified for use
with the builtin float types.

[

[

int cmp (mpf_class op1, type op2) [

int cmp (type opl, mpf-class op2) [

bool mpf_class::fits_sint_p (void) [

bool mpf_class::fits_slong_p (void) [

bool mpf_class::fits_sshort_p (void) [
bool mpf_class::fits_uint_p (void) [Functio

bool mpf_class::fits_ulong_p (void) [

[

[

[

[

[

[

bool mpf_class::fits_ushort_p (void) Functio
mpf_class floor (mpf class op) Functio
mpf_class hypot (mpf_class opl, mpf_class op2) Function
double mpf_class::get_d (void) Function
mpir_si mpf_class::get_si (void) Function
string mpf_class::get_str (mp-exp_t& exp, int base = 10, size_t Function

digits = 0)

mpir_ui mpf_class::get_ui (void) [Function
int mpf_class::set_str (const char *str, int base) [Function
int mpf_class::set_str (const string& str, int base) [Function
int sgn (mpf_class op) [Function
mpf_class sqrt (mpf_class op) [Function
void mpf_class::swap (mpf.class& op) [Function
void swap (mpf class& opl, mpf.class& op2) [Function
mpf_class trunc (mpf-class op) [Function

These functions provide a C++ class interface to the corresponding MPIR, C routines.
cmp can be used with any of the classes or the standard C++ types, except long double.

The accuracy provided by hypot is not currently guaranteed.

84 MPIR 3.0.0

mp_bitcnt_t mpf_class::get_prec () [Function]
void mpf_class::set_prec (mp-bitcnt_t prec) [Function]
void mpf_class::set_prec_raw (mp-_bitcnt_t prec) [Function]

Get or set the current precision of an mpf_class.

The restrictions described for mpf_set_prec_raw (see Section 7.1 [Initializing Floats],
page 50) apply to mpf_class::set_prec_raw. Note in particular that the mpf_class must
be restored to it’s allocated precision before being destroyed. This must be done by applica-
tion code, there’s no automatic mechanism for it.

12.5 C++ Interface Random Numbers

gmp_randclass [Class]
The C++ class interface to the MPIR random number functions uses gmp_randclass to hold
an algorithm selection and current state, as per gmp_randstate_t.

gmp_randclass: :gmp_randclass (void (*randinit) (gmp-randstate_t, [Function]
Construct a gmp_randclass, using a call to the given randinit function (see Section 9.1
[Random State Initialization]|, page 67). The arguments expected are the same as randinit,
but with mpz_class instead of mpz_t. For example,

gmp_randclass rl (gmp_randinit_default);
gmp_randclass r2 (gmp_randinit_lc_2exp_size, 32);
gmp_randclass r3 (gmp_randinit_lc_2exp, a, c, m2exp);
gmp_randclass r4 (gmp_randinit_mt);

gmp_randinit_lc_2exp_size will fail if the size requested is too big, an std: :length_error
exception is thrown in that case.

void gmp_randclass::seed (mpir_ui s) [Function]

void gmp_randclass::seed (mpz_class s) [Function]
Seed a random number generator. See see Chapter 9 [Random Number Functions|, page 67,
for how to choose a good seed.

mpz_class gmp_randclass::get_z_bits (mpir_ui bits) [Function]
mpz_class gmp_randclass::get_z_bits (mpz_class bits) [Function]
Generate a random integer with a specified number of bits.

mpz_class gmp_randclass::get_z_range (mpz_class n) [Function]
Generate a random integer in the range 0 to n — 1 inclusive.

mpf_class gmp_randclass::get_f () [Function]

mpf_class gmp_randclass::get_f (mpir_ui prec) [Function]
Generate a random float f in the range 0 <= f < 1. f will be to prec bits precision, or if
prec is not given then to the precision of the destination. For example,

gmp_randclass r;

mpf_class f (0, 512); // 512 bits precision
f=r.get_£Q); // random number, 512 bits

Chapter 12: C++ Class Interface 85

12.6 C++ Interface Limitations

mpqg_class and Templated Reading
A generic piece of template code probably won’t know that mpq_class requires a
canonicalize call if inputs read with operator>> might be non-canonical. This
can lead to incorrect results.

operator>> behaves as it does for reasons of efficiency. A canonicalize can be quite
time consuming on large operands, and is best avoided if it’s not necessary.

But this potential difficulty reduces the usefulness of mpg_class. Perhaps a mech-
anism to tell operator>> what to do will be adopted in the future, maybe a pre-
processor define, a global flag, or an ios flag pressed into service. Or maybe, at the
risk of inconsistency, the mpq_class operator>> could canonicalize and leave mpq_t
operator>> not doing so, for use on those occasions when that’s acceptable. Send
feedback or alternate ideas to http://groups.google.com/group/mpir-devel.

Subclassing
Subclassing the MPIR C++ classes works, but is not currently recommended.

Expressions involving subclasses resolve correctly (or seem to), but in normal C++
fashion the subclass doesn’t inherit constructors and assignments. There’s many of
those in the MPIR classes, and a good way to reestablish them in a subclass is not
yet provided.

Templated Expressions
A subtle difficulty exists when using expressions together with application-defined
template functions. Consider the following, with T intended to be some numeric
type,
template <class T>
T fun (const T &, const T &);

When used with, say, plain mpz_class variables, it works fine: T is resolved as
mpz_class.

mpz_class £(1), g(2);
fun (£, g); // Good

But when one of the arguments is an expression, it doesn’t work.

mpz_class £(1), g(2), h(3);
fun (£, g+h); // Bad

This is because g+h ends up being a certain expression template type internal to
mpirxx.h, which the C++ template resolution rules are unable to automatically
convert to mpz_class. The workaround is simply to add an explicit cast.

mpz_class £(1), g(2), h(3);
fun (f, mpz_class(g+h)); // Good

Similarly, within fun it may be necessary to cast an expression to type T when
calling a templated fun2.

template <class T>
void fun (T £, T g)
{
fun2 (f, f+g); // Bad
b

template <class T>
void fun (T £, T g)
{

http://groups.google.com/group/mpir-devel

86

}

fun2 (£, T(f+g));

// Good

MPIR 3.0.0

Chapter 13: .Net Interface 87

13 .Net Interface

This chapter describes the Microsoft.Net wrapper around MPIR.

If you are a .Net developer on MS Windows, using MPIR is possible via the basic managed-
to-native interop tooling provided by .Net. While this would allow access to the full MPIR
intreface, you would essentially be embedding C code inside whatever .Net language you are
using. This would virtually require familiarity with C/C++, the interop artefacts in your code
would be distractingly evident, and it would be hard to maintain a smooth code style around
managed /native transitions.

MPIR offers an alternative that addresses these issues: MPIR.Net. MPIR.Net is a Microsoft
Visual Studio solution that interoperates with MPIR and exposes a full managed interface built
from scratch, for consumption in any .Net language. It internalizes all C-rooted idiosynchrasies
and allows you to work with MPIR objects through managed classes that perform all necessary
marshaling behind the scenes. It strives to provide maximum performance by implementing
MPIR operations with direct calls to the native routines while not requiring you to sacrifice any
of your code style. It eliminates any requirement of fluency in C, yet delivers the performance of
native MPIR. In fact, it can consume any native MPIR build, including all supported processor-
specific builds, and can thus take advantage of the entire wealth of assembly-optimized MPIR
routines.

MPIR.Net is, however, limited to MS Windows and Visual Studio at this time. The managed
interface is written in Microsoft C++/CLI, which ties you to that specific environment. If you
use .Net on Linux and use a compiler other than Visual Studio, MPIR.Net will not work for
you, but then again, you may already have better native interop facilities available to you than
your Windows colleagues, making MPIR.Net rather moot.

MPIR.Net is bundled with MPIR as an optional feature. To build it, you still need to build the
native MPIR library first. As you do, you can select the best processor architecture that matches
your requirements. Then you build MPIR.Net, and it is linked statically to the native MPIR
library, producing a managed assembly. Thus, to build MPIR.Net, you need to be familiar with
the MPIR build process on Windows, and have a recent version of Visual Studio available (a
community edition will suffice).

13.1 MPIR.Net Feature Overview

MPIR.Net exposes the following main classes:

HugeInt [Class]
HugeRational [Class]
HugeFloat [Class]
MpirRandom [Class]

The standard operators are overloaded to allow arithmetic with these classes. For example,

void Calculate()

{
using (var a = new HugeInt(1234))
using (var b = new HugeInt("-5678"))
using (var c = new HugeInt(a + b))

{

Debug.WriteLine("Result: {0}", c);
}
+

88 MPIR 3.0.0

MPIR.Net’s multi-precision classes implement IDisposable, and the recommended usage for
local instances is as shown above, within a using clause to guarantee native memory clean-up
when a variable is disposed.

References that go out of scope without having been disposed are subject to the normal .Net
garbage collection, which in most cases invokes object finalizers, and those in turn deallocate
native memory. Applications that don’t have memory pressure should work just fine either way,
although deterministic disposal is a best practice.

Like MPIR’s native Chapter 12 [C++ Class Interface], page 78, MPIR.Net implements an expres-
sion like a.Value = b + ¢ with a single call to the corresponding native mpz_add, without using
a temporary for the b + ¢ part. More complex expressions that do not have a single-call native
implementation like a.Value = b*c + d*e, still use temporary variables. Importantly, a.Value
= a + bxc and the like will utilize the native mpz_addmul, etc. Note that in all of the above cases
the assignment syntax is to set the Value property; more on that below.

Another similarity of MPIR.Net with the C++ interface is the deferral of evaluation. All arith-
metic operations and many methods produce an expression object rather than an immediate
result. This allows expressions of arbitrary complexity to be built. They are not evaluated until
the expression is assigned to a destination variable, or when calling a method that produces a
primitive (non-MPIR.Net type) result. For example:

void Calculate()

{
var a = new HugeInt(12345);

var b = new HugeInt(67890);
var sum = a + b; // produces an expression
var doubleSum = sum * 2; // produces a new expression

bool positive = doubleSum > O; // evaluates the doubleSum expression
int sumSign = doubleSum.Sign(); // evaluates the doubleSum expression
a.Value = doubleSum - 4; // evaluates the doubleSum expression

}

Here the addition and multiplication in (a + b) * 2 are computed three times because they are
part of an expression that is consumed by three destinations, positive, sumSign, and a. To
avoid the triple addition, this method should be re-written as:

void Calculate()

{
var a = new HugeInt(12345);

var b = new HugeInt(67890);

var sum = a + b; // produces an expression

var doubleSum = new Hugelnt(sum * 2); // evaluates the expression
bool positive = doubleSum > O; // evaluates the > comparison
int sumSign = doubleSum.Sign(); // computes the sign

a.Value = doubleSum - 4; // computes the subtraction

}

Now the result of (a + b) * 2 is computed once and stored in an intermediate variable, whose
value is used in subsequent statements. This code can be shortened as follows without changing
the internal calculation:

void Calculate()

{
var a = new HugeInt(12345);

Chapter 13: .Net Interface 89

var b = new HugeInt(67890);
var doubleSum = new HugeInt((a + b) * 2); // evaluates the expression

var positive = doubleSum > O; // evaluates the > comparison
var sumSign = doubleSum.Sign(); // computes the sign
a.Value = doubleSum - 4; // computes the subtraction

}

The main idiosyncrasy of MPIR.Net is its assignment pattern. MPIR.Net types are implemented
as reference types with value semantics. Like .Net Strings, the objects themselves are just
lightweight pointers to data allocated elsewhere. In this case, the data is in native memory.
Unlike Strings, MPIR types are mutable.

Value semantics requires you to be able to code statements like a = b + c. However, .Net (outside
of C++) does not allow overloading the assignment operator, while assigning references would
necessitate some unnecessary duplication and extra memory allocations, require reliance on the
garbage collector, and prevent the use of mpz_addmul and the like.

To solve this problem, MPIR.Net uses the property assignment. All MPIR.Net types have a
Value property. The magic of this property is in its setter, which does what an overloaded
assignment operator would do in C++. So you write a.Value = b + ¢ to calculate the sum
of b and ¢ and store the result in the existing variable a. This seems to be as close to an
overloaded assignment as you can get in .Net, but is fluent enough to become a quick habit, and
additionally reinforces the concept that an existing object can change its value while reusing
internally allocated memory.

Setting Value evaluates the expression being assigned. Since at this point the destination is
known, mpz_addmul and similar can be recognized and invoked.

Reading this property is less interesting, as it’s equivalent to but wordier than using the reference
itself, i.e. a + b is equivalent to a.Value + b.Value. However it is still useful for making possible
constructs such as a.Value += 5, a.Value *= 10, etc.

If you absent-mindedly type a = b + c or a *= 10, these will not compile because there is no
implicit conversion from an expression. If an implicit conversion were defined, such code would
incur an extra allocation plus garbage collection, making it potentially slower than performing
the same operations on a.Value. It would also not compile if the destination were a local
variable defined in a using clause, as is the recommended practice for method-local instances.

Care should be taken with the construct var a = b;. While perfectly legal (and cannot be made
otherwise) in .Net, this only creates a copy of the managed reference to the same MPIR.Net
object, without any copying of the data. If b is subsequently disposed, referencing a will throw
an error.

MPIR classes can be intermixed in expressions to some degree. For example, most arithmetic
operations with rational operands will accept integers. Where mixed operations are defined in
MPIR, they are also implemented in MPIR.Net. Floats, on the other hand, typically don’t
accept operands of other types. There is some cost associated with creating a floating point
instance out of an integer, which would not be evident if automatic promotion existed. Use
explicit constructors to convert instances of one type to new instances of other types, or one of
the SetTo () overloads to save the result into an existing instance.

MPIR classes can also be intermixed in expressions with primitive types. For 64-bit builds,
this includes long and ulong, which correspond to an MPIR limb. For 32-bit builds, int and
uint are the largest primitive types you can use. Smaller integer primitives can always be used
because they will be promoted by .Net.

90 MPIR 3.0.0

Conversions back from MPIR classes to primitive types aren’t done automatically, instead meth-
ods ToLong() /ToUlong() for 64-bit builds or ToInt () /ToUint() are provided. Integers also
implement GetLimb ().

13.2 Building MPIR.Net
To build MPIR.Net, follow the steps below:

Get the sources

Build MPIR

Run MPIR unit tests

Build MPIR.Net

Run MPIR.Net unit tests

Reference MPIR.Net in your managed project

A T o

Get the sources: Clone the MPIR repository on GitHub to get the latest stable MPIR release.
This repository includes MPIR.Net. Or you can clone the MPIR.Net fork, which will get you
the development repository.

Build MPIR: Once you have the sources, you will need to build MPIR first. Read the MPIR
manual, available as a Documentation link on the MPIR page, for full details. Since MPIR.Net
currently requires Windows, you will need to build MPIR, for Windows using Microsoft Visual
Studio. MPIR provides solutions for the three latest versions of Visual Studio, and includes full
build instructions. You can select either a generic C build or an optimized build for a specific
processor. You must also select the Windows architecture desired (32-bit or 64-bit), and build
configuration (debug/release). You will need to build MPIR as Lib, not DLL, to use it with
MPIR.Net.

Run MPIR unit tests: MPIR contains a full suite of unit tests that you can (and should) execute
to validate your build. It is a large and complex project, and many things can go wrong while
building from sources. Building and running the tests only takes a few of minutes and might
save you a lot of headache. Note that you must also build MPIR’s C++ interface to run unit
tests, however it is not a dependency for MPIR.Net.

Build MPIR.Net: Next, load the MPIR.Net solution in Visual Studio. It is located in the
MPIR.Net folder, under which there are folders for the different supported Visual Studio ver-
sions. The projects are set up to look for the previously built MPIR library in its normal location
in the Lib folder. You will need to select the same architecture (x64 or x86) and configuration
(debug/release) as when you built MPIR. Then simply build the solution, and you are good to

go.

Run MPIR.Net unit tests: MPIR.Net includes its own suite of unit tests. Because MPIR.Net
is a wrapper around MPIR, these tests simply ensure that the right routines in MPIR are being
called, but do not validate the robustness of the MPIR build itself. Thus, it is necessary to run
both MPIR tests and MPIR.Net tests. MPIR.Net tests, though, are easier to run because they
are included right in the MPIR.Net solution.

Through binary compatibility with GMP 5.x, MPIR 2.x inherits a known issue that causes a
few MPIR.Net tests (2 for x86, 3 for x64) to fail. The issue has been corrected in GMP 6.x, and
is expected to be corrected correspondingly in MPIR 3.x. Because this behavior is not intuitive,
these tests remain in their current failing state until this is resolved.

Reference MPIR.Net: With the MPIR.Net assembly built, you're ready to create your own
project in a .Net language of your choice, add a reference to MPIR.Net, and take advantage of
the great mathematical powers of MPIR!

Chapter 13: .Net Interface 91

13.3 MPIR.Net Integers

HugelInt : IntegerExpression, IDisposable [Class]
The MPIR.Net type for the MPIR multi-precision integer is HugeInt. A closely related type is
IntegerExpression, which is returned from all operators and methods whose value semantics
are to compute another number from the source instance and any arguments. HugeInt
derives from IntegerExpression, and many operations are defined on the expression class.
Operations defined on HugeInt but not on IntegerExpression are typically those that
modify the value of the source number itself, and thus performing them on an expression
is meaningless. Because through inheritance all operations are available on HugeInt, the
descriptions below do not specifically indicate whether each operator or method is defined
for expressions, or just for HugeInt instances. For the sake of brevity, they are listed as if
they were methods of the HugeInt class. Visual Studio provides Intellisense and immediate
feedback to help sort out which operations are available on expressions.

Below is a brief summary of the supported multi-precision integer methods and operators. To
avoid repetition, implementation details are ommitted. Since MPIR native functions are called
behind the scenes, review Chapter 5 [Integer Functions|, page 29 for further details about the
native implementations.

HugeInt () [Constructor]
HugeInt (int/long n) [Constructor]
HugeInt (uint/ulong n) [Constructor]
HugeInt (double n) [Constructor]

Constructs a HugeInt object. Single-limb constructors vary by architecture, 32-bit builds
take an int or uint argument, 64-bit builds take a long or ulong. Any necessary conversion
follows the corresponding C function, for example double follows mpz_set_d (see Section 5.2
[Assigning Integers], page 30).

HugeInt (string s) [Constructor]

HugeInt (string s, int base) [Constructor]
Constructs a HugeInt converted from a string using mpz_set_str (see Section 5.2 [Assigning
Integers|, page 30). If the string is not a valid integer, an exception is thrown.

HugeInt (IntegerExpression e) [Constructor]
Evaluates the supplied expression and saves its result to the new instance. Because HugeInt
is derived from IntegerExpression, this constructor can be used to make a copy of an exist-
ing variable, i.e. HugeInt a = new HugeInt(b); without creating any permanent association
between them.

static HugeInt Allocate (uint/ulong bits) [Static Method|
void Reallocate (uint/ulong bits) [Method]
Controls the capacity in bits of the allocated integer.

int AllocatedSize [Property]
Returns the number of limbs currently allocated.

ulong Size () [Method]
Returns the number of limbs currently used.

long GetLimb (mp_size_t index) [Method]
Returns the specified limb.

92 MPIR 3.0.0

bool FitsUlong () //64-bit builds only [Method]
bool FitsLong () //64-bit builds only [Method]
bool FitsUint () [Method]
bool FitsInt () [Method]
bool FitsUshort () [Method]
bool FitsShort () [Method]
long ApproximateSizeInBase (int base) [Method]
Checks whether the number would fit in one of the built-in .Net types.
string ToString () [Method]
string ToString (int base) [Method]
string ToString (int base, bool lowercase) [Method]

Returns the string representation of the number. The default base is 10, and the parameter-
less overload is limited to 256 least significant digits by default, producing a leading ellipsis
(i.e. ...12345) when the number has more digits. This is done to prevent huge numbers from
unexpectedly consuming large amounts of memory in the debugger. The maximum number
of digits output is configurable via the MpirSettings.ToStringDigits property, where zero
means unlimited. The other overloads always output all digits.

int ToInt () //32-bit builds [

uint ToUint () //32-bit builds [

long ToLong () //64-bit builds [Method

ulong ToUlong () //64-bit builds [

double ToDouble () [

double ToDouble (out int/long exp) [Method
Converts the number to a primitive (built-in) .Net type, assuming it fits, which can be
determined by calling one of the Fits. .. methods.

IntegerExpression Value [Property]
Getting this property is essentially a no-op, as it returns the object instance itself. This never
needs to be done explicitly, but is used implicitly in statements like a.Value += 5;

Setting the Value property evaluates the assigned expression and saves the result to the
object.

void SetTo (int/long value) // 32/64-bit builds [Method]
void SetTo (uint/ulong value) // 32/64-bit builds [Method]
void SetTo (double value) [Method]
void SetTo (string value) [Method]
void SetTo (string value, int base) [Method]
([}

[]

void SetTo (RationalExpression value) Method

void SetTo (FloatExpression value) Method
Sets the value of existing variable from types other than IntegerExpression.

void Swap (Hugelnt a) [Method]

Swaps the values of the two objects. This is an O(1) operation.

Arithmetic operators (+, =, *, /, %) are overloaded to allow integers to participate in expressions
much like primitive integers can. Single-limb primitive types can be used. These operators will
also accept RationalExpression arguments, producing a RationalExpression result. Some
expression types expose additional methods, these are listed below. Invoking these methods
does not prevent the expression from participating in further expressions.

Chapter 13: .Net Interface 93

Expressions resulting from division or computing a modulo allow setting an explicit rounding
mode:

c.Value
d.Value

(a / b).Rounding(RoundingModes.Ceiling) + 4;
(a % b).Rounding(RoundingModes.Floor) + 4;

Division expressions optionally allow the remainder to be saved:
c.Value = (a / b).SavingRemainderTo(e) + 4;

When dividing by a limb, the remainder is a single limb and is saved to an unsigned limb
variable. However, passing this variable as an out argument would not work because of the
deferred evaluation. Instead, a delegate is passed which is called during evaluation:

ulong/uint remainder; // 64/32-bit builds
d.Value = (a / 100).SettingRemainderTo(x => remainder = x) + 4;

Symmetrically, the modulo expressions (%) allow the quotient to be saved:

c.Value = (a % b).SavingQuotientTo(e).RoundingMode (RoundingModes.Ceiling) + 4;
ulong/uint quotient; // 64/32-bit builds
d.Value = (a % 100).SettingQuotientTo(x => quotient = x) + 4;

uint/ulong Mod (uint/ulong divisor) [Method]

uint/ulong Mod (uint/ulong divisor, RoundingModes roundingMode) [Method]
Computes the absolute value of the remainder from division of the source number by the
specified divisor. This operation differs from using the % operator by where the result is
saved. The % operator returns an expression, and a HugeInt variable is required to receive the
result when the expression is assigned to its Value property. The Mod method, on the other
hand, computes and returns the remainder immediately since it’s a primitive type (single
limb), and no destination HugeInt variable is needed.

Operator ~ serves dual purposes: when the right operand is a single limb, it raises the source
number to a power, if the right operand is an IntegerExpression it performs a bitwise XOR.

Comparison operators (==, !=, <, <=, >, >=) accept IntegerExpression, single-limb, or double
arguments, but do not accept RationalExpression because that would require an awkward
explicit cast when comparing with null.

int CompareTo (IntegerExpression a) [Method]

bool Equals (IntegerExpression a) [Method]
Implement IComparable<IntegerExpression> and IEquatable<IntegerExpression> for
strongly-typed comparisons.

int CompareTo (object a) [Method]
bool Equals (object a) [Method]
Implement IComparable and equality check for any object. These accept a

RationalExpression as an argument, allowing cross-type comparisons not possible with
operators.

int GetHashCode () [Method]
This object override computes the hash code. This is an O(N) operation where N is the
number of limbs in use. Changing a number’s Value changes its hash code, so this should
not be done on any object that has been added to a hash table or dictionary.

94 MPIR 3.0.0

int CompareAbsTo (IntegerExpression a) [Method]
int CompareAbsTo (uint/ulong a) [Method]
int CompareAbsTo (double a) [Method]

Compares the absolute value of the number with the operand.

int Sign () [Method]
Returns the number’s sign.

Bit shift operators (<<, >>) accept an unsigned limb operand.

The right shift (>>) expression provides a method to compute the modulo, rather than the
default quotient:

var a = new HugeInt("0x1357");
Debug.WriteLine((a >> 8).ToString(16)); //prints 13
Debug.WriteLine((a >> 8).Remainder().ToString(16)); //prints 57

Bitwize operators (&, |, =, ~) are defined for IntegerExpression operands only. Note that
operator ~ is also defined for a limb operand, and in that case computes a power.

bool GetBit (uint/ulong position) [Method]
void SetBit (uint/ulong position, bool value) [Method]
void ComplementBit (uint/ulong position) [Method]

Allows access to individual bits of the number, using a "virtual" two’s complement represen-
tation.

uint/ulong PopCount () // 32/64-bit builds [Method]
Gets the number of set bits in the number.
uint/ulong HammingDistance (IntegerExpression target) // 32/64-bit [Method]
builds
Gets the hamming distance between this number and target.
uint/ulong FindBit (bool value, uint/ulong start) // 32/64-bit builds [Method]
Scans the number for next set or cleared bit (depending on value).
IntegerExpression Abs () [Method]
Returns an expression that computes the absolute value of the number.
IntegerExpression DivideExactly (IntegerExpression divisor) [Method]
IntegerExpression DivideExactly (uint/ulong divisor) // 32/64-bit [Method]
builds

Returns an expression that performs a fast division where it is known that there is no re-
mainder.

IntegerExpression PowerMod (IntegerExpression power, IntegerExpression [Method]
modulo)
IntegerExpression PowerMod (uint/ulong power, IntegerExpression [Method]

modulo) // 32/64-bit builds
Returns an expression that raises the source to the specified power modulo modulo.

bool IsDivisibleBy (IntegerExpression a) [Method]
bool IsDivisibleBy (uint/ulong a) [Method]
bool IsDivisibleByPower0f2 (uint/ulong power) [Method]

Chapter 13: .Net Interface 95

bool IsCongruentTo (IntegerExpression a, IntegerExpression modulo) [Method]
bool IsCongruentTo (uint/ulong a, uint/ulong modulo) [Method]
bool IsCongruentToModPower0f2 (IntegerExpression a, uint/ulong power) [Method]
bool IsPerfectPower () [Method]
bool IsPerfectSquare () [Method]

Performs various divisibility checks. These methods return a bool result, and therefore are
executed immediately. If they are called on an expression, the expression is evaluated to
a temporary which is discarded immediately afterwards. If you will need this result again,
assign the expression to a HugeInt variable and call the method on it.

long Write (Stream stream) [Method]
long Read (Stream stream) [Method]
Writes and reads integers to/from streams using the raw binary format.

long Write (TextWriter writer) [Method]
long Write (TextWriter writer, int base) [Method]
long Write (TextWriter writer, int base, bool lowercase) [Method]
long Read (TextReader reader) [Method]
long Read (TextReader reader, int base) [Method]

Writes and reads integers as text.

void Import<T> (T[] data, long 1imbCount, int bytesPerLimb, LimbOrder [Method|]
limbOrder, Endianness endianness, int nails)

long Export<T> (TJ| data, int bytesPerLimb, LimbOrder 1imbOrder, [Method|]
Endianness endianness, int nails)
T[] Export<T> (int bytesPerLimb, LimbOrder 1imbOrder, Endianness [Method]

endianness, int nails)
Imports/exports the absolute value of the number to/from arbitrary words of data.

bool IsProbablePrime (MpirRandom random, int probability, ulong/uint [Method]
pretested)
bool IsLikelyPrime (MpirRandom random, ulong/uint pretested) [Method]
static int Jacobi (Hugelnteger a, Hugelnteger b) [Static Method|
static int Legendre (Hugelnteger a, Hugelnteger b) [Static Method|
static int Kronecker (Hugelnteger a, Hugelnteger b) [Static Method|
static int Kronecker (Hugelnteger a, int/long b) [Static Method]
static int Kronecker (Hugelnteger a, uint/ulong b) [Static Method]
static int Kronecker (int/long a, Hugelnteger b) [Static Method]
static int Kronecker (uint/ulong a, Hugelnteger b) [Static Method]
static IntegerExpression Power (uint/ulong value, uint/ulong [Static Method]

power)
static IntegerExpression Factorial (uint/ulong value) [Static Method]
static IntegerExpression Factorial (uint/ulong value, [Static Method]
uint/ulong order)
static IntegerExpression Primorial (uint/ulong value) [Static Method]
static IntegerExpression Binomial (uint/ulong n, uint/ulong k) [Static Method]
static IntegerExpression Binomial (IntegerExpression n, [Static Method]
uint/ulong k)

Performs various number-theoretic computations.

96 MPIR 3.0.0

static IntegerSequenceExpression Fibonacci (int/long n) [Static Method]

static IntegerSequenceExpression Lucas (int/long n) [Static Method]
These two methods return a specialized expression that provides an additional method to
optionally save the previous number in the sequence, in addition to the number requested,
for example:

var b = new HugeInt();
var ¢ = new HugeInt (HugeInt.Fibonacci(300).SavingPreviousTo(b));

IntegerSquareRootExpression SquareRoot () [Method]
Returns an expression that evaluates to the square root of the number. The expression
provides a method to optionally save the remainder to a second variable:

a.Value = b.SquareRoot () .SavingRemainderTo(c);

IntegerRootExpression Root (ulong/uint power) [Method]
Returns an expression that evaluates to the root of the specified power of the number. The
expression provides two optional methods. One allows to save the remainder to a second
variable, and the other allows to set a boolean flag indicating whether the root operation was
exact. Note that computing the remainder is more costly than just getting an exact flag.

bool exact = false;
a.Value = b.Root(3).SavingRemainderTo(r) ;

c.Value = d.Root(4).SettingExactTo(x => exact = x);
e.Value = f.Root(5).SavingRemainderTo(r).SettingExactTo(x => exact = x);
IntegerExpression NextPrimeCandidate (MpirRandom random) [Method]

Returns an expression that looks for the next possible prime greater than the source number.

uint/ulong Gcd (uint/ulong a) [Method]
Computes the greatest common divisor with the specified single-limb number.

IntegerGecdExpression Ged (IntegerExpression a) [Method]
Returns an expression that computes the greatest common divisor of the source number and
a. Provides a method to optionally calculate the related Diophantine equation multiplier(s):

c.Value = a.Gcd(b) .SavingDiophantineMultipliersTo(s, t);

If either s or t is null, that coefficient is not computed.

IntegerExpression Lcm (IntegerExpression a) [Method]
IntegerExpression Lcm (uint/ulong a) [Method]
Computes the least common multiple with a.

IntegerExpression Invert (IntegerExpression modulo) [Method]
Returns an expression to compute the inverse of the source number modulo modulo.

IntegerRemoveFactorsExpression RemoveFactors (IntegerExpression [Method]
factor)
Returns an expression that evaluates to the result of removing all occurrences of the specified
factor from the source number. Provides a method to optionally save the number of factors
that were removed:

ulong/uint numberRemoved; // 64/32-bit builds

Chapter 13: .Net Interface 97

a.Value
d.Value

b.RemoveFactors(c);
e.RemoveFactors(f) .SavingCountRemovedTo(x => numberRemoved = x) ;

13.4 MPIR.Net Rationals

HugeRational : RationalExpression, IDisposable [Class]
MPIR multi-precision rational numbers are represented by the HugeRational class, along
with its corresponding expression class RationalExpression, which is returned from all
operators and methods whose value semantics are to compute another number from the
source instance and any arguments. Operations defined on HugeRational but not on
RationalExpression are typically those that modify the value of the source number itself,
and thus performing them on an expression is meaningless. Because through inheritance all
operations are available on HugeRational, the descriptions below do not specifically indicate
whether each operator or method is defined for expressions, or just for HugeRational in-
stances. For the sake of brevity, they are listed as if they were methods of the HugeRational
class. Visual Studio provides Intellisense and immediate feedback to help sort out which
operations are available on expressions.

Below is a brief summary of the supported multi-precision rational methods and operators. To
avoid repetition, implementation details are ommitted. Since MPIR native functions are called
behind the scenes, review Chapter 6 [Rational Number Functions], page 46 for further details
about the native implementations.

HugeRational () [Constructor]
HugeRational (int/long numerator, uint/ulong denominator) [Constructor]
([]

[]

HugeRational (uint/ulong numerator, uint/ulong denominator) Constructor

HugeRational (IntegerExpression numerator, IntegerExpression Constructor
demoninator)

HugeRational (double n) [Constructor]

Constructs a HugeRational object. Single-limb constructors vary by architecture, 32-bit
builds take int or uint arguments, 64-bit builds take long or ulong. Any necessary con-
version follows the corresponding C function, for example double follows mpq_set_d (see
Section 6.1 [Initializing Rationals|, page 46).

HugeRational (string s) [Constructor]

HugeRational (string s, int base) [Constructor]
Constructs a HugeRational converted from a string using mpq_set_str (see Section 6.1
[Initializing Rationals|, page 46). If the string is not a valid integer or rational, an exception
is thrown.

When constructing a rational number from a numerator and denominator, including the string
constructors where both numerator and denominator are specified, the fraction should be in
canonical form, or if not then Canonicalize() should be called.

HugeRational (IntegerExpression e) [Constructor]
HugeRational (RationalExpression e) [Constructor]
HugeRational (FloatExpression e) [Constructor]

Evaluates the supplied expression and saves its result to the new instance. Because multi-
precision classes are derived from their corresponding expression classes, these construc-
tors can be used to make a copy of an existing variable, i.e. HugeRational a = new
HugeRational (b) ; without creating any permanent association between them.

98 MPIR 3.0.0

static HugeRational Allocate (uint/ulong numeratorBits, [Static Method]
uint/ulong denominatorBits)
Controls the capacity in bits of the allocated integer. HugeRational does not have a
Reallocate method, but its numerator and demonimator are derived from Hugelnt and
can thus be reallocated separately.

void Canonicalize () [Method]
Puts a HugeRational into canonical form, as per Chapter 6 [Rational Number Functions],
page 46. All arithmetic operators require their operands in canonical form, and will return
results in canonical form.

HugeInt Numerator [Property]

HugeInt Denominator [Property]
These read-only properties expose the numerator and denominator for direct manipulation.
They return specialized instances of the HugeInt class that do not own their limb data. They
override the Dispose () method with a no-op, so they can be safely passed around as normal
integers, even to code that tries to dispose of them.

Once a numerator or denominator is obtained, it remains valid for the life of the HugeRational
instance. It references live data, so for example, if the Value of the rational is modified, it
will be visible through a previously obtained numerator/denominator instance. Conversely,
setting the Value of a numerator or denominator modifies the Value of its owning rational,
and if this cannot be known to keep the rational in canonical form, Canonicalize() must
be called before performing any further MPIR, operations on the rational.

Multiple copies can be safely obtained, and reference the same internal structures. Once the
HugeRational is disposed, any numerator and denominator instances obtained from it are
no longer valid.

long ApproximateSizeInBase (int base) [Method]
Returns the number of digits the absolute value of number would take if written in the
specified base. The result can be at most 2 characters too long, and allows for a numerator,
a division sign, and a denominator, but excludes the leading minus sign.

string ToString () [Method]
string ToString (int base) [Method]
string ToString (int base, bool lowercase) [Method]

Returns the string representation of the number. The default base is 10, and the parame-
terless overload is limited to 256 least significant digits by default, each for a numerator and
a denominator, producing a leading ellipsis (i.e. ...12345) when either component has more
digits. This is done to prevent huge numbers from unexpectedly consuming large amounts
of memory in the debugger. The maximum number of digits output is configurable via the
MpirSettings.ToStringDigits property, where zero means unlimited. The other overloads
always output all digits.

double ToDouble () [Method]
Converts the number to a double, possibly truncated.

RationalExpression Value [Property]
Getting this property is essentially a no-op, as it returns the object instance itself. This never
needs to be done explicitly, but is used implicitly in statements like a.Value += 5;

Setting the Value property evaluates the assigned expression and saves the result to the
object.

Chapter 13: .Net Interface 99

void SetTo
void SetTo

(int/long value) // 32/64-bit builds []
(int/long numerator, uint/ulong denominator) []
void SetTo (uint/ulong value) M]
void SetTo (uint/ulong numerator, uint/ulong denominator) M]
void SetTo (double value) [Method]
void SetTo (string value) M]
void SetTo (string value, int base) M]
void SetTo (IntegerExpression value) []
void SetTo (IntegerExpression numerator, IntegerExpression denominator) []
void SetTo (FloatExpression value) [Method]
Sets the value of existing variable from types other than RationalExpression. When setting
both the numerator and denominator, canonicalization must be managed explicitly.

void Swap (HugeRational a) [Method|
Swaps the values of the two objects. This is an O(1) operation. Any existing numerators and
denominators remain associated with the object on which they were obtained, and reflect its
new value.

Arithmetic operators (+, -, *, /) are overloaded to allow rationals to participate in expressions
much like primitive integers can. Single-limb primitive types can be used. These operators will
also accept IntegerExpression arguments, and will automatically promote them. In expres-
sions, promotion of an IntegerExpression to a RationalExpression is an O(1) operation. Of
course, when constructing a rational from an integer, a copy is made so this becomes O(N).

Due to the rationals’ nature, division is always exact (there is no rounding) and the modulo
operator (%) is not defined. Also not defined are the bit shift operators (<<, >>), and the bitwise
operators (&, |, =, 7).

~

Operator ~ raises the source number to the specified power.

Comparison operators (==, !=, <, <= > >=) accept RationalExpression, single-limb, or dou-
ble arguments, but do not accept integer or float expressions because that would require an
awkward explicit cast when comparing with null. Use the CompareTo(object) method for
Cross-comparisons.

int CompareTo (RationalExpression a) [Method]

bool Equals (RationalExpression a) [Method]
Implement IComparable<RationalExpression> and IEquatable<RationalExpression>
for strongly-typed comparisons.

int CompareTo (object a) [Method]

bool Equals (object a) [Method]
Implement IComparable and equality check for any object. For rationals, these methods
support any expression type (integer, rational, or float).

bool Equals (int/long numerator, uint/ulong denominator) []
bool Equals (uint/ulong numerator, uint/ulong denominator) []
int CompareTo (int/long numerator, uint/ulong denominator) [Method]

[]

int CompareTo (uint/ulong numerator, uint/ulong denominator) Method
Single-limb comparisons for rationals take two arguments.
int GetHashCode () [Method]

This object override computes the hash code. This is an O(N) operation where N is the
number of limbs in use in the numerator and denominator combined. Changing a number’s

100 MPIR 3.0.0

Value changes its hash code, so this should not be done on any object that has been added
to a hash table or dictionary.

int Sign () [Method]
Returns the number’s sign.

RationalExpression Abs () [Method]
Returns an expression that computes the absolute value of the number.

RationalExpression Invert () [Method]
Returns an expression that computes the inverse of the number.

long Write (Stream stream) [Method|
long Read (Stream stream) [Method]
Writes and reads rationals to/from streams using the raw binary format.

long Write (TextWriter writer) [Method]
long Write (TextWriter writer, int base) [Method]
long Write (TextWriter writer, int base, bool lowercase) [Method]
long Read (TextReader reader) [Method]
long Read (TextReader reader, int base) [Method]
Writes and reads rationals as text.

There are no Import/Export methods, but they can of course be invoked on the numerator
and/or denominator.

RationalExpression does not have any specialized subclasses, as there are no operations on
the rational type that require additional inputs beyond the left and right operator operands.

13.5 MPIR.Net Floats

HugeFloat : FloatExpression, IDisposable [Class]
The MPIR.Net class for multi-precision floating point numbers is HugeFloat, and its cor-
responding expression class is FloatExpression, which is returned from all operators and
methods whose value semantics are to compute another number from the source instance and
any arguments. HugeFloat derives from FloatExpression, and many operations are defined
on the expression class. Operations defined on HugeFloat but not on FloatExpression are
typically those that modify the value of the source number itself, and thus performing them
on an expression is meaningless. Because through inheritance all operations are available
on HugeFloat, the descriptions below do not specifically indicate whether each operator or
method is defined for expressions, or just for HugeFloat instances. For the sake of brevity,
they are listed as if they were methods of the HugeFloat class. Visual Studio provides Intel-
lisense and immediate feedback to help sort out which operations are available on expressions.

Below is a brief summary of the supported multi-precision rational methods and operators. To
avoid repetition, implementation details are ommitted. Since MPIR native functions are called
behind the scenes, review Chapter 7 [Floating-point Functions|, page 50 for further details about
the native implementations.

static uint/ulong DefaultPrecision [Static Property]
Gets or sets the default precision of the floating point mantissa, in bits. If the value is
not a multiple of limb size, the actual precision will be rounded up. All newly constructed

Chapter 13: .Net Interface 101

HugeFloat objects that don’t explicitly specify precision will use this default. Previously
constructed objects are unaffected. The initial default precision is 2 limbs.

When an expression is evaluated, it is either because it is being assigned to some destination
variable (e.g. a.Value =b + c;) or a primitive-computing method is being called (e.g. int
s = (b+c).Sign();) In the former case, the precision of the destination is used for all
computations and temporaries during expression evaluation. In the latter case, there is no
destination so the DefaultPrecision is used.

HugeFloat () [Constructor]
HugeFloat (int/long value) [Constructor]
HugeFloat (uint/ulong value) [Constructor]
HugeFloat (double n) [Constructor]

Constructs a HugeFloat object. Single-limb constructors vary by architecture, 32-bit builds
take int or uint arguments, 64-bit builds take long or ulong. Any necessary conversion
follows the corresponding C function, for example double follows mpf_set_d (see Section 7.1
[Initializing Floats|, page 50).

HugeFloat (string s) [Constructor]
HugeFloat (string s, int base) [Constructor]
HugeFloat (string s, int base, bool exponentInDecimal) [Constructor]

Constructs a HugeFloat converted from a string using mpf_set_str (see Section 7.1 [Ini-
tializing Floats|, page 50). If the string is not a valid integer or floating point number, an
exception is thrown.

HugeFloat (IntegerExpression value) [Constructor]
HugeFloat (RationalExpression value) [Constructor]
HugeFloat (FloatExpression value) [Constructor]

Evaluates the supplied expression and saves its result to the new instance. Because multi-
precision classes are derived from their corresponding expression classes, these constructors
can be used to make a copy of an existing variable, i.e. HugeFloat a = new HugeFloat(b) ;
without creating any permanent association between them.

static HugeRational Allocate (uint/ulong precision) [Static Method]
void Reallocate (uint/ulong precision) [Method]
Controls the allocated precision in bits of the new or existing HugeFloat.

uint/ulong AllocatedPrecision [Property]
Gets the precision in bits that is currently allocated for internal storage of the mantissa. The
precision actually in effect, used in calculations, is initially the same but may be reduced by
setting the Precision property.

uint/ulong Precision [Property]
Gets or sets the effective precision of the number without changing the memory allocated.
The number of bits cannot exceed the precision with which the variable was initialized or
last reallocated. The value of the number is unchanged, and in particular if it previously
had a higher precision it will retain that higher precision. New values assigned to the Value
property will use the new precision. The number can be safely disposed after modifying
its Precision (unlike the native MPIR, which requires you to restore the precision to the
allocated value before the memory can be freed).

bool FitsUlong () //64-bit builds only [Method]
bool FitsLong () //64-bit builds only [Method]

102 MPIR 3.0.0

bool FitsUint () [Method]

bool FitsInt () [Method]

bool FitsUshort () [Method]

bool FitsShort () [Method]
Checks whether the number would fit in one of the built-in .Net types.

bool IsInteger () [Method]

Checks whether the number is a whole integer.

string ToString () []

string ToString (int base) [Method]

string ToString (int base, bool lowercase) []

string ToString (int base, bool lowercase, bool exponentInDecimal) []
Returns the string representation of the number. The default base is 10, and the parame-
terless overload is limited to 256 mantissa digits by default. This is done to prevent huge
numbers from unexpectedly consuming large amounts of memory in the debugger. The
maximum number of digits output is configurable via the MpirSettings.ToStringDigits
property, where zero means unlimited. MpirSettings.ToStringDigits applies to integers
and rationals as well. The other overloads always output all digits.

int TolInt () //32-bit builds [

uint ToUint () //32-bit builds [

long ToLong () //64-bit builds [Method

ulong ToUlong () //64-bit builds [

double ToDouble () [

double ToDouble (out int/long exp) [Method
Converts the number to a primitive (built-in) .Net type, assuming it fits, which can be
determined by calling one of the Fits. .. methods.

FloatExpression Value [Property]
Getting this property is essentially a no-op, as it returns the object instance itself. This never
needs to be done explicitly, but is used implicitly in statements like a.Value += 5;

Setting the Value property evaluates the assigned expression and saves the result to the
object.

void SetTo (int/long value) // 32/64-bit builds [Method]
void SetTo (uint/ulong value) // 32/64-bit builds [Method]
void SetTo (double value) [Method]
void SetTo (string value) [Method]
void SetTo (string value, int base) [Method]
void SetTo (string value, int base, bool exponentInDecimal) [Method]
void SetTo (IntegerExpression value) [Method]
void SetTo (RationalExpression value) [Method]
Sets the value of existing variable from types other than FloatExpression.
void Swap (HugeFloat a) [Method]

Swaps the values (and precisions) of the two objects. This is an O(1) operation.

Arithmetic operators (+, -, *, /) and bit shifts (<<, >>) are overloaded to allow floats to par-
ticipate in expressions much like primitive types can. Single-limb primitive types can be used.
These operators do not accept integer or rational expressions. There is some cost of instanti-

Chapter 13: .Net Interface 103

ating a floating point number from another multi-precision type, so to make this point clear
MPIR.Net forces you to use explicit constructors or assignments for this conversion.

The modulo operator (%) and the bitwise operators (&, |, ~, ~) are not defined.

~

Operator ~ raises the source number to the specified power.

Comparison operators (==, !=, <, <= > >=) accept FloatExpression, single-limb, or double
arguments, but do not accept integer or rational expressions because that would require an
awkward explicit cast when comparing with null.

int CompareTo (FloatExpression a) [Method]

bool Equals (FloatExpression a) [Method]
Implement IComparable<FloatExpression> and IEquatable<FloatExpression> for
strongly-typed comparisons.

int CompareTo (object a) [Method]

bool Equals (object a) [Method]
Implement IComparable and equality check for any object. These support only float expres-
sions or .Net primitive types. When this method is called on a HugeFloat object, comparison
is performed to the precision of the object. When called on an expression, comparison is per-
formed to the default precision.

int GetHashCode () [Method|]
This object override computes the hash code. This is an O(N) operation where N is the
number of limbs allocated. Changing a number’s Value changes its hash code, so this should
not be done on any object that has been added to a hash table or dictionary.

bool Equals (object a, uint/ulong precision) [Method]
Checks for equality using the specified precision. The argument a can be a FloatExpression
or a primitive type.

FloatExpression RelativeDifferenceFrom (FloatExpression a) [Method]
Returns an expression that computes |this — a|/this

FloatExpression Abs () [Method]
FloatExpression SquareRoot () [Method]
static FloatExpression SquareRoot (uint/ulong a) [Static Method|
FloatExpression Floor () [Method]
FloatExpression Ceiling () [Method]
FloatExpression Truncate () [Method]
int Sign () [Method]
Perform various floating-point operations.
long Write (TextWriter writer) [Method]
long Write (TextWriter writer, int base) [Method]
long Write (TextWriter writer, int base, int maxDigits, bool lowercase, [Method]
bool exponentInDecimal)
long Read (TextReader reader) [Method]
long Read (TextReader reader, int base) [Method]
long Read (TextReader reader, int base, bool exponentInDecimal) [Method]

Writes and reads floats as text.

104 MPIR 3.0.0

13.6 MPIR.Net Random Numbers

MpirRandom : IDisposable [Class]
The MPIR.Net class that wraps the MPIR random number functions is MpirRandom. It
holds an algorithm selection and current state, as per gmp_randstate_t. As the multi-
precision classes, MpirRandom allocates unmanaged memory, and should be disposed of via
its IDisposable implementation when no longer in use.

static MpirRandom Default () [Static Method]

static MpirRandom MersenneTwister () [Static Method]

static MpirRandom LinearCongruential (Hugelnt a, ulong/uint c, [Static Method]
ulong/uint m)

static MpirRandom LinearCongruential (ulong/uint size) [Static Method]

In lieu of constructors, MpirRandom uses more descriptive static factory methods to create
new instances of specific random number generator algorithms.

MpirRandom Copy () [Method]
Creates a new random number generator with a copy of the algorithm and state from the
source instance.

void Seed (ulong/uint seed) [Method]
void Seed (Hugelnt seed) [Method]
Sets an initial seed value into the random number generator.

ulong/uint GetLimbBits (ulong/uint bitCount) [Method]
Generates a uniformly distributed random number of bitCount bits, i.e. in the range 0 to
gbitCount—1 inclysive.

ulong/uint GetLimb (ulong/uint max) [Method]
Generates a uniformly distributed random number in the range 0 to max — 1 inclusive.

IntegerExpression GetIntBits (ulong/uint bitCount) [Method]

IntegerExpression GetIntBitsChunky (ulong/uint bitCount) [Method]
Returns an expression that generates a uniformly distributed random integer in the range 0
to 2bitCount=1 "inclusive.

IntegerExpression GetInt (IntegerExpression max) [Method]
Returns an expression that generates a uniformly distributed random number in the range 0
to max — 1 inclusive.

FloatExpression GetFloat () [Method]
Returns an expression that generates a uniformly distributed random float in the range
0 < n < 1. As with all float expressions, precision of the destination is used when available.

FloatExpression GetFloatBits (ulong/uint bitCount) [Method]
Returns an expression that generates a uniformly distributed random float in the range
0 < n < 1, with the specified number of significant mantissa bits.

FloatExpression GetFloatChunky (int maxExponent) [Method]
Returns an expression that generates a random float with long strings of zeros and ones in the
binary representation, using the precision of the destination. The argument is the maximum
absolute value for the exponent of the generated number, expressed in limbs.

Chapter 13: .Net Interface 105

FloatExpression GetFloatLimbsChunky (long 1imbCount, int [Method]
maxExponent)
Returns an expression that generates a random float with long strings of zeros and ones in
the binary representation, and the specified number of significant limbs in the mantissa.

13.7 MPIR.Net Settings

MpirSettings [Static Class]
This static class contains several members that describe or control various default behaviors
of the other MPIR.Net classes.

int BITS_PER_LIMB [Constant]
Represents the total number of bits in a single MPIR limb, including data bits and nail bits.
This will be either 32 or 64, depending on your selected build architecture.

int NAIL_BITS_PER_LIMB [Constant]
Represents the number of nail bits in a single MPIR, limb. Nail bits are used internally by
MPIR.

int USABLE_BITS_PER_LIMB [Constant]
Represents the number of data bits in a single MPIR limb.

Version MPIR_VERSION [Constant]
Represents the version of the underlying MPIR library

Version GMP_VERSION [Constant]
Represents the version of GMP with which the underlying MPIR library is compatible

RoundingModes RoundingMode [Static Property]
Gets or sets the default rounding mode used for MPIR integer division operations that don’t
explicitly specify a rounding mode. Does not affect rational or float operations. The default
value is Truncate.

int ToStringDigits [Static Property]
Gets or sets the maximum number of digits the object.ToString() method override will
output. If an integer number is longer than this number of digits, it will be output as
"[-]...NNNNN" with the least significant digits shown. Rational numbers apply the limit
separately to the numerator and denominator. Floats output the most significant digits, and
there is no ellipsis.

The primary purpose of this setting is to prevent accidental allocation of large memory blocks
while inspecting variables in the debugger. The default value is 256. Setting this property to
0 causes all digits to be output.

106 MPIR 3.0.0

14 Custom Allocation

By default MPIR uses malloc, realloc and free for memory allocation, and if they fail MPIR
prints a message to the standard error output and terminates the program.

Alternate functions can be specified, to allocate memory in a different way or to have a different
error action on running out of memory.

void mp_set_memory_functions ([Function]
void *(*alloc_func_ptr) (size-t),
void *(*realloc_func_ptr) (void *, size_t, size_t),
void (*free_func_ptr) (void *, size_t))
Replace the current allocation functions from the arguments. If an argument is NULL, the
corresponding default function is used.

These functions will be used for all memory allocation done by MPIR, apart from tempo-
rary space from alloca if that function is available and MPIR is configured to use it (see
Section 2.1 [Build Options|, page 3).

Be sure to call mp_set_memory_functions only when there are no active MPIR objects
allocated using the previous memory functions! Usually that means calling it before any
other MPIR function.

The functions supplied should fit the following declarations:

void * allocate_function (size-t alloc_size) [Function]
Return a pointer to newly allocated space with at least alloc_size bytes.

void * reallocate_function (void *ptr, size_t old_size, size_t [Function]
new_size)
Resize a previously allocated block ptr of old_size bytes to be new_size bytes.

The block may be moved if necessary or if desired, and in that case the smaller of old_size
and new_size bytes must be copied to the new location. The return value is a pointer to the
resized block, that being the new location if moved or just ptr if not.

ptr is never NULL, it’s always a previously allocated block. new_size may be bigger or smaller
than old_size.

void free_function (void *ptr, size_t size) [Function]
De-allocate the space pointed to by ptr.

ptr is never NULL, it’s always a previously allocated block of size bytes.

A byte here means the unit used by the sizeof operator.

The old_size parameters to reallocate_function and free_function are passed for convenience,
but of course can be ignored if not needed. The default functions using malloc and friends for
instance don’t use them.

No error return is allowed from any of these functions, if they return then they must have per-
formed the specified operation. In particular note that allocate_function or reallocate_function
mustn’t return NULL.

Chapter 14: Custom Allocation 107

Getting a different fatal error action is a good use for custom allocation functions, for example
giving a graphical dialog rather than the default print to stderr. How much is possible when
genuinely out of memory is another question though.

There’s currently no defined way for the allocation functions to recover from an error such as out
of memory, they must terminate program execution. A longjmp or throwing a C++ exception
will have undefined results. This may change in the future.

MPIR may use allocated blocks to hold pointers to other allocated blocks. This will limit the
assumptions a conservative garbage collection scheme can make.

Any custom allocation functions must align pointers to limb boundaries. Thus if a limb is eight
bytes (e.g. on x86-64), then all blocks must be aligned to eight byte boundaries. Check the
configuration options for the custom allocation library in use. It is not necessary to align blocks
to SSE boundaries even when SSE code is used. All MPIR assembly routines assume limb
boundary alignment only (which is the default for most standard memory managers).

Since the default MPIR allocation uses malloc and friends, those functions will be linked in
even if the first thing a program does is an mp_set_memory_functions. It’s necessary to change
the MPIR sources if this is a problem.

void mp_get_memory_functions ([Function]
void *(**alloc_func_ptr) (size_t),
void *(**realloc_func_ptr) (void * size_t, size_t),
void (**free_func_ptr) (void *, size_t))
Get the current allocation functions, storing function pointers to the locations given by the
arguments. If an argument is NULL, that function pointer is not stored.

For example, to get just the current free function,

void (*#freefunc) (void *, size_t);

mp_get_memory_functions (NULL, NULL, &freefunc);

108 MPIR 3.0.0

15 Language Bindings

The following packages and projects offer access to MPIR from languages other than C, though
perhaps with varying levels of functionality and efficiency.

C++

e MPIR C++ class interface, see Chapter 12 [C++ Class Interface], page 78
Straightforward interface, expression templates to eliminate temporaries.

e ALP nhttp://www-sop.inria.fr/saga/logiciels/ALP/
Linear algebra and polynomials using templates.

e CLN http://www.ginac.de/CLN/
High level classes for arithmetic.

e LiDIA http://www.informatik.tu-darmstadt.de/TI/LiDIA/
A C++ library for computational number theory.

e Linbox http://www.linalg.org/
Sparse vectors and matrices.

e NTL http://www.shoup.net/ntl/
A C++ number theory library.
Eiffel
o Eiffel Interface http://www.eiffelroom.org/node/407
An Eiffel Interface to MPFR, MPC and MPIR by Chris Saunders.
Fortran
e Omni F77 http://phase.hpcc. jp/0mni/home.html
Arbitrary precision floats.
Haskell
o Glasgow Haskell Compiler http://www.haskell.org/ghc/

Java
e Kaffe http://www.kaffe.org/
Lisp
e Embeddable Common Lisp http://ecls.sourceforge.net/download.html
e GNU Common Lisp http://www.gnu.org/software/gcl/gcl.html
e Librep http://librep.sourceforge.net/

e XEmacs (21.5.18 beta and up) http://www.xemacs.org
Optional big integers, rationals and floats using MPIR.

M4

e GNU m4 betas http://www.seindal.dk/rene/gnu/
Optionally provides an arbitrary precision mpeval.

ML
e MLton compiler http://mlton.org/

Objective Caml
e Numerix http://pauillac.inria.fr/“quercia/
Optionally using GMP.

e Mozart http://www.mozart-oz.org/

http://www-sop.inria.fr/saga/logiciels/ALP/
http://www.ginac.de/CLN/
http://www.informatik.tu-darmstadt.de/TI/LiDIA/
http://www.linalg.org/
http://www.shoup.net/ntl/
http://www.eiffelroom.org/node/407
http://phase.hpcc.jp/Omni/home.html
http://www.haskell.org/ghc/
http://www.kaffe.org/
http://ecls.sourceforge.net/download.html
http://www.gnu.org/software/gcl/gcl.html
http://librep.sourceforge.net/
http://www.xemacs.org
http://www.seindal.dk/rene/gnu/
http://mlton.org/
http://pauillac.inria.fr/~quercia/
http://www.mozart-oz.org/

Chapter 15: Language Bindings 109

Pascal

Perl

PHP

Pike

Prolog

Python

Scheme

Smalltalk

Other

GNU Pascal Compiler http://www.gnu-pascal.de/
GMP unit.

Numerix http://pauillac.inria.fr/"quercia/
For Free Pascal, optionally using GMP.

GMP module, see demos/perl on the MPIR website.

Math::GMP http://wuw.cpan.org/
Compatible with Math::Biglnt, but not as many functions as the GMP module
above.

Math::BigInt::GMP http://www.cpan.org/
Plug Math::GMP into normal Math::Biglnt operations.

mpz module in the main distribution, http://php.net/

mpz module in the standard distribution, http://pike.ida.liu.se/

SWI Prolog http://www.swi-prolog.org/
Arbitrary precision floats.

mpz module in the standard distribution, http://www.python.org/
GMPY http://gmpy.sourceforge.net/

GNU Guile (upcoming 1.8) http://www.gnu.org/software/guile/guile.
html

RScheme http://www.rscheme.org/

GNU Smalltalk http://www.smalltalk.org/versions/GNUSmalltalk.html

ALGLIB http://www.alglib.net/

Numerical analysis and data processing library.

Axiom http://savannah.nongnu.org/projects/axiom
Computer algebra using GCL.

GiNaC http://www.ginac.de/

C++ computer algebra using CLN.

GOO http://www.googoogaga.org/

Dynamic object oriented language.

Maxima http://www.ma.utexas.edu/users/wfs/maxima.html
Macsyma computer algebra using GCL.

Q http://g-lang.sourceforge.net/

Equational programming system.

Regina http://regina.sourceforge.net/

Topological calculator.

Sage http://www.sagemath.org/
Computer Algebra System written in Python and Cython.

http://www.gnu-pascal.de/
http://pauillac.inria.fr/~quercia/
http://www.cpan.org/
http://www.cpan.org/
http://php.net/
http://pike.ida.liu.se/
http://www.swi-prolog.org/
http://www.python.org/
http://gmpy.sourceforge.net/
http://www.gnu.org/software/guile/guile.html
http://www.gnu.org/software/guile/guile.html
http://www.rscheme.org/
http://www.smalltalk.org/versions/GNUSmalltalk.html
http://www.alglib.net/
http://savannah.nongnu.org/projects/axiom
http://www.ginac.de/
http://www.googoogaga.org/
http://www.ma.utexas.edu/users/wfs/maxima.html
http://q-lang.sourceforge.net/
http://regina.sourceforge.net/
http://www.sagemath.org/

110 MPIR 3.0.0

e Yacas http://yacas.sourceforge.net/homepage.html
Yet another computer algebra system.

http://yacas.sourceforge.net/homepage.html

Chapter 16: Algorithms 111

16 Algorithms

This chapter is an introduction to some of the algorithms used for various MPIR, operations.
The code is likely to be hard to understand without knowing something about the algorithms.

Some MPIR internals are mentioned, but applications that expect to be compatible with future
MPIR releases should take care to use only the documented functions.

16.1 Multiplication

NxN limb multiplications and squares are done using one of six algorithms, as the size N
increases.

Algorithm Mul Threshold

Basecase (none)

Karatsuba MUL_KARATSUBA_THRESHOLD
Toom-3 MUL_TOOM3_THRESHOLD
Toom-4 MUL_TOOM4_THRESHOLD
Toom-8(.5) MUL_TOOM8H_THRESHOLD
FFT MUL_FFT_FULL_THRESHOLD
Algorithm Sqr Threshold

Basecase (none)

Karatsuba SQR_KARATSUBA_THRESHOLD
Toom-3 SQR_TOOM3_THRESHOLD
Toom-4 SQR_T0OOM4_THRESHOLD
Toom-8 SQR_TOOM8_THRESHOLD
FFT SQR_FFT_FULL_THRESHOLD

NxM multiplications of operands with different sizes above MUL_KARATSUBA_THRESHOLD are
done using unbalanced Toom algorithms or with the FFT. See (see Section 16.1.7 [Unbalanced
Multiplication], page 117).

16.1.1 Basecase Multiplication

Basecase NxM multiplication is a straightforward rectangular set of cross-products, the same
as long multiplication done by hand and for that reason sometimes known as the schoolbook or
grammar school method. This is an O(NM) algorithm. See Knuth section 4.3.1 algorithm M
(see Appendix B [References|, page 145), and the mpn/generic/mul_basecase.c code.

Assembler implementations of mpn_mul_basecase are essentially the same as the generic C code,
but have all the usual assembler tricks and obscurities introduced for speed.

A square can be done in roughly half the time of a multiply, by using the fact that the cross
products above and below the diagonal are the same. A triangle of products below the diagonal
is formed, doubled (left shift by one bit), and then the products on the diagonal added. This can
be seen in mpn/generic/sqr_basecase.c. Again the assembler implementations take essentially
the same approach.

112 MPIR 3.0.0

u0 ul u2 u3d u4
ul | g

ul d
u2 d
u3 d
ud d

In practice squaring isn’t a full 2x faster than multiplying, it’s usually around 1.5x. Less than
1.5x probably indicates mpn_sqr_basecase wants improving on that CPU.

On some CPUs mpn_mul_basecase can be faster than the generic C mpn_sqr_basecase on some
small sizes. SQR_BASECASE_THRESHOLD is the size at which to use mpn_sqr_basecase, this will
be zero if that routine should be used always.

16.1.2 Karatsuba Multiplication

The Karatsuba multiplication algorithm is described in Knuth section 4.3.3 part A, and various
other textbooks. A brief description is given here.

The inputs z and y are treated as each split into two parts of equal length (or the most significant
part one limb shorter if N is odd).

high low

[5 [%

’ Y1 ‘ Yo ‘

Let b be the power of 2 where the split occurs, ie. if xy is k limbs (yo the same) then b =
ghxmp_bits_per 1imb \yith that z = z,b + xo and y = y1b + yo, and the following holds,

zy = (b* + b)z1y1 — b(x1 — x0)(y1 — yo) + (b + 1)xoyo

This formula means doing only three multiplies of (N/2)x(N/2) limbs, whereas a basecase
multiply of NxN limbs is equivalent to four multiplies of (N/2)x(N/2). The factors (b* +b) etc
represent the positions where the three products must be added.

high low
1l ‘ LoYo ‘
+ ’ T1 ‘
+ ’ ZoYo ‘

- ’ (x1 — 20) (Y1 — Yo) ‘

The term (7 — o) (y1 — Yo) is best calculated as an absolute value, and the sign used to choose
to add or subtract. Notice the sum high(zyyo) + low(z1y:) occurs twice, so it’s possible to do 5k
limb additions, rather than 6k, but in MPIR extra function call overheads outweigh the saving.

Squaring is similar to multiplying, but with £ = y the formula reduces to an equivalent with
three squares,

22 = (0% +b)x — b(zy — x0)? + (b+ 1)

The final result is accumulated from those three squares the same way as for the three multiplies
above. The middle term (z; — xy)? is now always positive.

A similar formula for both multiplying and squaring can be constructed with a middle term
(x1 4+ ®0)(y1 + yo). But those sums can exceed k limbs, leading to more carry handling and
additions than the form above.

Chapter 16: Algorithms 113

Karatsuba multiplication is asymptotically an O(N!5%%) algorithm, the exponent being
log 3/ log 2, representing 3 multiplies each 1/2 the size of the inputs. This is a big improvement
over the basecase multiply at O(N?) and the advantage soon overcomes the extra additions
Karatsuba performs. MUL_KARATSUBA_THRESHOLD can be as little as 10 limbs. The SQR
threshold is usually about twice the MUL.

The basecase algorithm will take a time of the form M(N) = aN? + bN + ¢ and the Karatsuba
algorithm K (N) = 3M(N/2)+dN +e, which expands to K(N) = 2aN?+2bN +3c+dN +e. The
factor % for a means per-crossproduct speedups in the basecase code will increase the threshold
since they benefit M(N) more than K(N). And conversely the 2 for b means linear style
speedups of b will increase the threshold since they benefit K (N) more than M (V). The latter
can be seen for instance when adding an optimized mpn_sqr_diagonal to mpn_sqr_basecase.
Of course all speedups reduce total time, and in that sense the algorithm thresholds are merely
of academic interest.

16.1.3 Toom 3-Way Multiplication

The Karatsuba formula is the simplest case of a general approach to splitting inputs that leads
to both Toom and FFT algorithms. A description of Toom can be found in Knuth section 4.3.3,
with an example 3-way calculation after Theorem A. The 3-way form used in MPIR is described
here.

The operands are each considered split into 3 pieces of equal length (or the most significant part
1 or 2 limbs shorter than the other two).

high low

Cm o T %

’ Y2 ‘ Y1 ‘ Yo ‘

These parts are treated as the coefficients of two polynomials

X(t) = l‘gtz —+ $1t + Zo
Y (t) = yat® + yut + Yo

Let b equal the power of 2 which is the size of the xg, 1, yo and y, pieces, ie. if they’re k limbs
each then b = 2k*mp-bits_per_1imb v\yith this z = X (b) and y = Y (b).

Let a polynomial W (t) = X (¢)Y (¢) and suppose its coefficients are
W (t) = wat* + w3t + wyt? + wit + wy

The w; are going to be determined, and when they are they’ll give the final result using w = W (b),
since xy = X (b)Y (b). The coefficients will be roughly b* each, and the final W (b) will be an
addition like,

high low

| ws |

114 MPIR 3.0.0

The w; coefficients could be formed by a simple set of cross products, like wy = x2y,, wz =
ToY1 + T1Y2, Wo = T2Yo + T1Y1 + ToY2 etc, but this would need all nine z,y; for 7,7 = 0,1, 2, and
would be equivalent merely to a basecase multiply. Instead the following approach is used.

X(t) and Y (t) are evaluated and multiplied at 5 points, giving values of W (¢) at those points.
In MPIR the following points are used,

Point Value
t=20 ToYo, Which gives wg immediately
t=1 (@2 + 21 + 20) (Y2 + Y1 + Yo)
t=-1 (2 — 21 +20) (Y2 — Y1 + %)
t=2 (42 + 221 + 0) (4y2 + 201 + Yo)
t=o0 T, which gives w, immediately
At t = —1 the values can be negative and that’s handled using the absolute values and tracking

the sign separately. At t = co the value is actually lim,_, w, but it’s much easier to think

of as simply z,y, giving wy immediately (much like zgy, at ¢ = 0 gives w, immediately).

Each of the points substituted into W (t) = w4t* + - - - + wy gives a linear combination of the w;
coefficients, and the value of those combinations has just been calculated.

W(O) = Wo
W) = wy + wz + wy + wi + wp
W(-1) = wy — w3 + wy — w; -+ w
W(2) = 16ws; + 8wz + 4wy, + 2w, + wy
W(oo) = wy

This is a set of five equations in five unknowns, and some elementary linear algebra quickly
isolates each w;. This involves adding or subtracting one W (t) value from another, and a couple
of divisions by powers of 2 and one division by 3, the latter using the special mpn_divexact_by3
(see Section 16.2.4 [Exact Division|, page 119).

The conversion of W (¢) values to the coefficients is interpolation. A polynomial of degree 4 like
W (t) is uniquely determined by values known at 5 different points. The points are arbitrary and
can be chosen to make the linear equations come out with a convenient set of steps for quickly
isolating the w;.

Squaring follows the same procedure as multiplication, but there’s only one X (¢) and it’s evalu-
ated at the 5 points, and those values squared to give values of W (t). The interpolation is then
identical, and in fact the same toom3_interpolate subroutine is used for both squaring and
multiplying.

Toom-3 is asymptotically O(N'4%%) the exponent being log5/log 3, representing 5 recursive
multiplies of 1/3 the original size each. This is an improvement over Karatsuba at O(N!-5%),
though Toom does more work in the evaluation and interpolation and so it only realizes its
advantage above a certain size.

Near the crossover between Toom-3 and Karatsuba there’s generally a range of sizes where the
difference between the two is small. MUL_TOOM3_THRESHOLD is a somewhat arbitrary point in that
range and successive runs of the tune program can give different values due to small variations
in measuring. A graph of time versus size for the two shows the effect, see tune/README.

At the fairly small sizes where the Toom-3 thresholds occur it’s worth remembering that the
asymptotic behaviour for Karatsuba and Toom-3 can’t be expected to make accurate predictions,
due of course to the big influence of all sorts of overheads, and the fact that only a few recursions

Chapter 16: Algorithms 115

of each are being performed. Even at large sizes there’s a good chance machine dependent effects
like cache architecture will mean actual performance deviates from what might be predicted.

The formula given for the Karatsuba algorithm (see Section 16.1.2 [Karatsuba Multiplication],
page 112) has an equivalent for Toom-3 involving only five multiplies, but this would be com-
plicated and unenlightening.

An alternate view of Toom-3 can be found in Zuras (see Appendix B [References|, page 145),
using a vector to represent the x and y splits and a matrix multiplication for the evaluation
and interpolation stages. The matrix inverses are not meant to be actually used, and they have
elements with values much greater than in fact arise in the interpolation steps. The diagram
shown for the 3-way is attractive, but again doesn’t have to be implemented that way and for
example with a bit of rearrangement just one division by 6 can be done.

16.1.4 Toom 4-Way Multiplication

Karatsuba and Toom-3 split the operands into 2 and 3 coefficients, respectively. Toom-4 anal-
ogously splits the operands into 4 coefficients. Using the notation from the section on Toom-3
multiplication, we form two polynomials:

X(t) = w3t® + xot? + 21t + T
Y (t) = yst® + yat® + 31t + o

X (t) and Y (t) are evaluated and multiplied at 7 points, giving values of W (t) at those points.
In MPIR the following points are used,

Point Value

t=20 ZoYo, which gives wy immediately

t=1/2 (x3 + 229 + 421 + 820) (y3 + 2y2 + 4y1 + 8yo)
t=-1/2 (—x3 + 229 — 41 + 8x0) (—ys + 2y2 — 4y1 + 8yo)
t=1 (23 + @9 + 11+ 20) (Y3 + Y2 + y1 + Yo)

t=-1 (=23 + 22 — 21 + o) (—ys +¥2 — Y1 + Vo)

t=2 (8x3 + 4o + 21 + x0) (8ys + 4y + 2y1 + yo)
t=o0 313, which gives wg immediately

The number of additions and subtractions for Toom-4 is much larger than for Toom-3. But
several subexpressions occur multiple times, for example x5 + zg, occurs for both t = 1 and
t=-—1.

Toom-4 is asymptotically O(N'191) the exponent being log 7/log4, representing 7 recursive
multiplies of 1/4 the original size each.

16.1.5 FFT Multiplication
This section is out-of-date and will be updated when the new FFT is added.

At large to very large sizes a Fermat style FF'T multiplication is used, following Schonhage and
Strassen (see Appendix B [References|, page 145). Descriptions of FFTs in various forms can
be found in many textbooks, for instance Knuth section 4.3.3 part C or Lipson chapter IX. A
brief description of the form used in MPIR is given here.

The multiplication done is zy mod 2V + 1, for a given N. A full product xy is obtained by
choosing N > bits(x) + bits(y) and padding = and y with high zero limbs. The modular product
is the native form for the algorithm, so padding to get a full product is unavoidable.

The algorithm follows a split, evaluate, pointwise multiply, interpolate and combine similar to
that described above for Karatsuba and Toom-3. A k parameter controls the split, with an FFT-

116 MPIR 3.0.0

k splitting into 2% pieces of M = N/2* bits each. N must be a multiple of 2¥ xmp_bits_per_limb
so the split falls on limb boundaries, avoiding bit shifts in the split and combine stages.

The evaluations, pointwise multiplications, and interpolation, are all done modulo 2V +1 where
N’ is 2M + k + 3 rounded up to a multiple of 2% and of mp_bits_per_limb. The results of
interpolation will be the following negacyclic convolution of the input pieces, and the choice of
N’ ensures these sums aren’t truncated.

w,, = Z (—1)bxiyj

itj=b2k4n
b=0,1

The points used for the evaluation are g' for i = 0 to 2% — 1 where g = 22V'/2". g is a 2*th root
of unity mod 2V’ + 1, which produces necessary cancellations at the interpolation stage, and it’s
also a power of 2 so the fast fourier transforms used for the evaluation and interpolation do only
shifts, adds and negations.

The pointwise multiplications are done modulo 2V 4 1 and either recurse into a further FFT
or use a plain multiplication (Toom-3, Karatsuba or basecase), whichever is optimal at the size
N'. The interpolation is an inverse fast fourier transform. The resulting set of sums of z,y; are
added at appropriate offsets to give the final result.

Squaring is the same, but z is the only input so it’s one transform at the evaluate stage and the
pointwise multiplies are squares. The interpolation is the same.

For a mod 2V + 1 product, an FFT-k is an O(N*/(*=1) algorithm, the exponent representing
2% recursed modular multiplies each 1/2*~! the size of the original. Each successive k is an
asymptotic improvement, but overheads mean each is only faster at bigger and bigger sizes. In
the code, MUL_FFT_TABLE and SQR_FFT_TABLE are the thresholds where each k is used. Each
new k effectively swaps some multiplying for some shifts, adds and overheads.

A mod 2V +1 product can be formed with a normal N x N — 2N bit multiply plus a subtraction,
so an FFT and Toom-3 etc can be compared directly. A k =4 FFT at O(N'33%) can be expected
to be the first faster than Toom-3 at O(N'%%). In practice this is what’s found, with MUL_FFT_
MODF_THRESHOLD and SQR_FFT_MODF_THRESHOLD being between 300 and 1000 limbs, depending
on the CPU. So far it’s been found that only very large FFTs recurse into pointwise multiplies
above these sizes.

When an FFT is to give a full product, the change of N to 2N doesn’t alter the theoretical
complexity for a given k, but for the purposes of considering where an FFT might be first used
it can be assumed that the FFT is recursing into a normal multiply and that on that basis it’s
doing 2* recursed multiplies each 1/2¥~2 the size of the inputs, making it O(N*/*=2). This
would mean k = 7 at O(N'*) would be the first FFT faster than Toom-3. In practice MUL_
FFT_FULL_THRESHOLD and SQR_FFT_FULL_THRESHOLD have been found to be in the & = 8 range,
somewhere between 3000 and 10000 limbs.

The way N is split into 2% pieces and then 2M + k + 3 is rounded up to a multiple of 2¥ and
mp_bits_per_limb means that when 2¥ > mp_bits_per_limb the effective N is a multiple of
22k=1 bits. The +k + 3 means some values of N just under such a multiple will be rounded
to the next. The complexity calculations above assume that a favourable size is used, meaning
one which isn’t padded through rounding, and it’s also assumed that the extra +k 4 3 bits are
negligible at typical FFT sizes.

The practical effect of the 22*~! constraint is to introduce a step-effect into measured speeds.
For example k£ = 8 will round N up to a multiple of 32768 bits, so for a 32-bit limb there’ll be
512 limb groups of sizes for which mpn_mul_n runs at the same speed. Or for k& = 9 groups of
2048 limbs, k = 10 groups of 8192 limbs, etc. In practice it’s been found each k is used at quite

Chapter 16: Algorithms 117

small multiples of its size constraint and so the step effect is quite noticeable in a time versus
size graph.

The threshold determinations currently measure at the mid-points of size steps, but this is sub-
optimal since at the start of a new step it can happen that it’s better to go back to the previous
k for a while. Something more sophisticated for MUL_FFT_TABLE and SQR_FFT_TABLE will be
needed.

16.1.6 Other Multiplication

The Toom algorithms described above (see Section 16.1.3 [Toom 3-Way Multiplication],
page 113), see Section 16.1.4 [Toom 4-Way Multiplication]|, page 115) generalize to split into an
arbitrary number of pieces, as per Knuth section 4.3.3 algorithm C. MPIR currently implements
Toom 8 routines.

These are generated automatically via a technique due to Bodrato (see Appendix B [Refer-
ences|, page 145) which mixes evaluation, pointwise multiplication and interpolation phases.
The routine used is called Toom 8.5. See Bodrato’s paper.

For general Toom-n a split into r + 1 pieces is made, and evaluations and pointwise multipli-
cations done at 2r + 1 points. A 4-way split does 7 pointwise multiplies, 5-way does 9, etc.
Asymptotically an (r + 1)-way algorithm is O(N'92+1/leg(r+1) - Only the pointwise multiplica-
tions count towards big-O complexity, but the time spent in the evaluate and interpolate stages
grows with r and has a significant practical impact, with the asymptotic advantage of each r
realized only at bigger and bigger sizes. The overheads grow as O(Nr), whereas in an r = 2*
FFT they grow only as O(N logr).

Knuth algorithm C evaluates at points 0,1,2,...,2r, but exercise 4 uses —r,...,0,...,r and the
latter saves some small multiplies in the evaluate stage (or rather trades them for additions),
and has a further saving of nearly half the interpolate steps. The idea is to separate odd and
even final coefficients and then perform algorithm C steps C7 and C8 on them separately. The
divisors at step C7 become j2 and the multipliers at C8 become 2tj — 5.

Splitting odd and even parts through positive and negative points can be thought of as using —1
as a square root of unity. If a 4th root of unity was available then a further split and speedup
would be possible, but no such root exists for plain integers. Going to complex integers with
i = v/—1 doesn’t help, essentially because in cartesian form it takes three real multiplies to do
a complex multiply. The existence of 2*th roots of unity in a suitable ring or field lets the fast
fourier transform keep splitting and get to O(N logr).

Floating point FFTs use complex numbers approximating Nth roots of unity. Some processors
have special support for such FFTs. But these are not used in MPIR since it’s very difficult to
guarantee an exact result (to some number of bits). An occasional difference of 1 in the last bit
might not matter to a typical signal processing algorithm, but is of course of vital importance
to MPIR.

16.1.7 Unbalanced Multiplication

Multiplication of operands with different sizes, both below MUL_KARATSUBA_THRESHOLD are done
with plain schoolbook multiplication (see Section 16.1.1 [Basecase Multiplication|, page 111).

For really large operands, we invoke the FFT directly.

For operands between these sizes, we use Toom inspired algorithms suggested by Alberto Zanoni
and Marco Bodrato. The idea is to split the operands into polynomials of different degree. These
algorithms are denoted ToomMN where the first input is broken into M components and the
second operand is broken into N components. MPIR currently implements Toom32, Toom33,

118 MPIR 3.0.0

Toom44, Toom53 and Toom8h which deals with a variety of sizes where the product polynomial
will have length 15 or 16.

16.2 Division Algorithms

16.2.1 Single Limb Division

Nx1 division is implemented using repeated 2x1 divisions from high to low, either with a
hardware divide instruction or a multiplication by inverse, whichever is best on a given CPU.

The multiply by inverse follows section 8 of “Division by Invariant Integers using Multiplication”
by Granlund and Montgomery (see Appendix B [References|, page 145) and is implemented as
udiv_qrnnd_preinv in gmp-impl.h. The idea is to have a fixed-point approximation to 1/d
(see invert_limb) and then multiply by the high limb (plus one bit) of the dividend to get a
quotient g. With d normalized (high bit set), ¢ is no more than 1 too small. Subtracting qd
from the dividend gives a remainder, and reveals whether ¢ or ¢ — 1 is correct.

The result is a division done with two multiplications and four or five arithmetic operations. On
CPUs with low latency multipliers this can be much faster than a hardware divide, though the
cost of calculating the inverse at the start may mean it’s only better on inputs bigger than say
4 or 5 limbs.

When a divisor must be normalized, either for the generic C __udiv_qrnnd_c or the multiply
by inverse, the division performed is actually a2* by d2* where a is the dividend and k is the
power necessary to have the high bit of d2* set. The bit shifts for the dividend are usually
accomplished “on the fly” meaning by extracting the appropriate bits at each step. Done this
way the quotient limbs come out aligned ready to store. When only the remainder is wanted,
an alternative is to take the dividend limbs unshifted and calculate r = a mod d2* followed by
an extra final step r2¥ mod d2*. This can help on CPUs with poor bit shifts or few registers.

The multiply by inverse can be done two limbs at a time. The calculation is basically the same,
but the inverse is two limbs and the divisor treated as if padded with a low zero limb. This
means more work, since the inverse will need a 2x2 multiply, but the four 1x1s to do that
are independent and can therefore be done partly or wholly in parallel. Likewise for a 2x1
calculating gd. The net effect is to process two limbs with roughly the same two multiplies
worth of latency that one limb at a time gives. This extends to 3 or 4 limbs at a time, though
the extra work to apply the inverse will almost certainly soon reach the limits of multiplier
throughput.

A similar approach in reverse can be taken to process just half a limb at a time if the divisor is
only a half limb. In this case the 1x1 multiply for the inverse effectively becomes two % x 1 for
each limb, which can be a saving on CPUs with a fast half limb multiply, or in fact if the only
multiply is a half limb, and especially if it’s not pipelined.

16.2.2 Basecase Division
This section is out-of-date.

Basecase N xM division is like long division done by hand, but in base 2mP-Pits-per_limb geq

Knuth section 4.3.1 algorithm D.

Briefly stated, while the dividend remains larger than the divisor, a high quotient limb is formed
and the Nx1 product qd subtracted at the top end of the dividend. With a normalized divisor
(most significant bit set), each quotient limb can be formed with a 2x1 division and a 1x1
multiplication plus some subtractions. The 2x1 division is by the high limb of the divisor and
is done either with a hardware divide or a multiply by inverse (the same as in Section 16.2.1

Chapter 16: Algorithms 119

[Single Limb Division|, page 118) whichever is faster. Such a quotient is sometimes one too big,
requiring an addback of the divisor, but that happens rarely.

With Q=N—M being the number of quotient limbs, this is an O(QM) algorithm and will run
at a speed similar to a basecase QxM multiplication, differing in fact only in the extra multiply
and divide for each of the QQ quotient limbs.

16.2.3 Divide and Conquer Division

This section is out-of-date

For divisors larger than DIV_DC_THRESHOLD, division is done by dividing. Or to be precise by a
recursive divide and conquer algorithm based on work by Moenck and Borodin, Jebelean, and
Burnikel and Ziegler (see Appendix B [References|, page 145).

The algorithm consists essentially of recognising that a 2NxN division can be done with the
basecase division algorithm (see Section 16.2.2 [Basecase Division|, page 118), but using N/2
limbs as a base, not just a single limb. This way the multiplications that arise are (N/2)x(N/2)
and can take advantage of Karatsuba and higher multiplication algorithms (see Section 16.1
[Multiplication Algorithms], page 111). The two “digits” of the quotient are formed by recursive
Nx(N/2) divisions.

If the (N/2)x(N/2) multiplies are done with a basecase multiplication then the work is about the
same as a basecase division, but with more function call overheads and with some subtractions
separated from the multiplies. These overheads mean that it’s only when N/2 is above MUL_
KARATSUBA_THRESHOLD that divide and conquer is of use.

DIV_DC_THRESHOLD is based on the divisor size N, so it will be somewhere above twice MUL_
KARATSUBA_THRESHOLD, but how much above depends on the CPU. An optimized mpn_mul_
basecase can lower DIV_DC_THRESHOLD a little by offering a ready-made advantage over repeated
mpn_submul_1 calls.

Divide and conquer is asymptotically O(M (NN)log N) where M(N) is the time for an NxN
multiplication done with FFTs. The actual time is a sum over multiplications of the recursed
sizes, as can be seen near the end of section 2.2 of Burnikel and Ziegler. For example, within
the Toom-3 range, divide and conquer is 2.63M (N). With higher algorithms the M(N) term
improves and the multiplier tends to log N. In practice, at moderate to large sizes, a 2NxN
division is about 2 to 4 times slower than an NxN multiplication.

Newton’s method used for division is asymptotically O(M (NN)) and should therefore be superior
to divide and conquer, but it’s believed this would only be for large to very large N.

16.2.4 Exact Division

This section is out-of-date

A so-called exact division is when the dividend is known to be an exact multiple of the divisor.
Jebelean’s exact division algorithm uses this knowledge to make some significant optimizations
(see Appendix B [References|, page 145).

The idea can be illustrated in decimal for example with 368154 divided by 543. Because the
low digit of the dividend is 4, the low digit of the quotient must be 8. This is arrived at from
4x7 mod 10, using the fact 7 is the modular inverse of 3 (the low digit of the divisor), since
3x7=1mod 10. So 8x543 = 4344 can be subtracted from the dividend leaving 363810. Notice
the low digit has become zero.

120 MPIR 3.0.0

The procedure is repeated at the second digit, with the next quotient digit 7 (1x7 mod 10),
subtracting 7x543 = 3801, leaving 325800. And finally at the third digit with quotient digit 6
(8x7 mod 10), subtracting 6x543 = 3258 leaving 0. So the quotient is 678.

Notice however that the multiplies and subtractions don’t need to extend past the low three
digits of the dividend, since that’s enough to determine the three quotient digits. For the last
quotient digit no subtraction is needed at all. On a 2NxN division like this one, only about half
the work of a normal basecase division is necessary.

For an NxM exact division producing Q=N—M quotient limbs, the saving over a normal basecase
division is in two parts. Firstly, each of the Q quotient limbs needs only one multiply, not a 2x1
divide and multiply. Secondly, the crossproducts are reduced when @ > M to QM —M (M+1)/2,
or when Q < M to Q(Q — 1)/2. Notice the savings are complementary. If Q is big then many
divisions are saved, or if Q is small then the crossproducts reduce to a small number.

The modular inverse used is calculated efficiently by modlimb_invert in gmp-impl.h. This does
four multiplies for a 32-bit limb, or six for a 64-bit limb. tune/modlinv.c has some alternate
implementations that might suit processors better at bit twiddling than multiplying.

The sub-quadratic exact division described by Jebelean in “Exact Division with Karatsuba
Complexity” is not currently implemented. It uses a rearrangement similar to the divide and
conquer for normal division (see Section 16.2.3 [Divide and Conquer Division], page 119), but
operating from low to high. A further possibility not currently implemented is “Bidirectional
Exact Integer Division” by Krandick and Jebelean which forms quotient limbs from both the
high and low ends of the dividend, and can halve once more the number of crossproducts needed

in a 2NxN division.

A special case exact division by 3 exists in mpn_divexact_by3, supporting Toom-3 multiplication
and mpq canonicalizations. It forms quotient digits with a multiply by the modular inverse of 3
(which is 0xAA..AAB) and uses two comparisons to determine a borrow for the next limb. The
multiplications don’t need to be on the dependent chain, as long as the effect of the borrows is
applied, which can help chips with pipelined multipliers.

16.2.5 Exact Remainder

If the exact division algorithm is done with a full subtraction at each stage and the dividend
isn’t a multiple of the divisor, then low zero limbs are produced but with a remainder in the
high limbs. For dividend a, divisor d, quotient g, and b = 2mP-bits_per_limb i}ig remainder
r is of the form

a=qd+rbd"

n represents the number of zero limbs produced by the subtractions, that being the number of
limbs produced for ¢. r will be in the range 0 < r < d and can be viewed as a remainder, but
one shifted up by a factor of b™.

Carrying out full subtractions at each stage means the same number of cross products must be
done as a normal division, but there’s still some single limb divisions saved. When d is a single
limb some simplifications arise, providing good speedups on a number of processors.

mpn_bdivmod, mpn_divexact_by3, mpn_modexact_1_odd and the redc function in mpz_powm
differ subtly in how they return r, leading to some negations in the above formula, but all are
essentially the same.

Clearly r is zero when a is a multiple of d, and this leads to divisibility or congruence tests which
are potentially more efficient than a normal division.

Chapter 16: Algorithms 121

The factor of b” on r can be ignored in a GCD when d is odd, hence the use of mpn_bdivmod in
mpn_gcd, and the use of mpn_modexact_1_odd by mpn_gcd_1 and mpz_kronecker_ui etc (see
Section 16.3 [Greatest Common Divisor Algorithms], page 121).

Montgomery’s REDC method for modular multiplications uses operands of the form of xb™"
and yb~" and on calculating (xb~")(yb™") uses the factor of b in the exact remainder to reach a
product in the same form (xy)b~" (see Section 16.4.2 [Modular Powering Algorithm|, page 124).

Notice that r generally gives no useful information about the ordinary remainder ¢ mod d since
b" mod d could be anything. If however 0" = 1 mod d, then r is the negative of the ordinary
remainder. This occurs whenever d is a factor of b™ — 1, as for example with 3 in mpn_divexact_
by3. For a 32 or 64 bit limb other such factors include 5, 17 and 257, but no particular use has
been found for this.

16.2.6 Small Quotient Division

An NxM division where the number of quotient limbs Q=N-M is small can be optimized
somewhat.

An ordinary basecase division normalizes the divisor by shifting it to make the high bit set,
shifting the dividend accordingly, and shifting the remainder back down at the end of the
calculation. This is wasteful if only a few quotient limbs are to be formed. Instead a division
of just the top 2Q limbs of the dividend by the top Q limbs of the divisor can be used to form
a trial quotient. This requires only those limbs normalized, not the whole of the divisor and
dividend.

A multiply and subtract then applies the trial quotient to the M—Q unused limbs of the divisor
and N—Q dividend limbs (which includes Q limbs remaining from the trial quotient division).
The starting trial quotient can be 1 or 2 too big, but all cases of 2 too big and most cases of
1 too big are detected by first comparing the most significant limbs that will arise from the
subtraction. An addback is done if the quotient still turns out to be 1 too big.

This whole procedure is essentially the same as one step of the basecase algorithm done in a Q
limb base, though with the trial quotient test done only with the high limbs, not an entire Q
limb “digit” product. The correctness of this weaker test can be established by following the
argument of Knuth section 4.3.1 exercise 20 but with the v,g > b + u, condition appropriately
relaxed.

16.3 Greatest Common Divisor

16.3.1 Binary GCD

At small sizes MPIR uses an O(N?) binary style GCD. This is described in many textbooks,
for example Knuth section 4.5.2 algorithm B. It simply consists of successively reducing odd
operands a and b using

a,b = abs (a — b), min (a, b)
strip factors of 2 from a

The Euclidean GCD algorithm, as per Knuth algorithms E and A, reduces using a mod b but
this has so far been found to be slower everywhere. One reason the binary method does well
is that the implied quotient at each step is usually small, so often only one or two subtractions
are needed to get the same effect as a division. Quotients 1, 2 and 3 for example occur 67.7%
of the time, see Knuth section 4.5.3 Theorem E.

When the implied quotient is large, meaning b is much smaller than a, then a division is worth-
while. This is the basis for the initial @ mod b reductions in mpn_gcd and mpn_gcd_1 (the latter

122 MPIR 3.0.0

for both Nx1 and 1x1 cases). But after that initial reduction, big quotients occur too rarely to
make it worth checking for them.

The final 1 x 1 GCD in mpn_gcd_1 is done in the generic C code as described above. For two
N-bit operands, the algorithm takes about 0.68 iterations per bit. For optimum performance
some attention needs to be paid to the way the factors of 2 are stripped from a.

Firstly it may be noted that in twos complement the number of low zero bits on a — b is the
same as b — a, so counting or testing can begin on a — b without waiting for abs (a — b) to be
determined.

A loop stripping low zero bits tends not to branch predict well, since the condition is data
dependent. But on average there’s only a few low zeros, so an option is to strip one or two bits
arithmetically then loop for more (as done for AMD K6). Or use a lookup table to get a count
for several bits then loop for more (as done for AMD K7). An alternative approach is to keep
just one of a or b odd and iterate

a,b = abs (a — b), min (a, b)
a = a/2 if even
b=b/2 if even

This requires about 1.25 iterations per bit, but stripping of a single bit at each step avoids
any branching. Repeating the bit strip reduces to about 0.9 iterations per bit, which may be a
worthwhile tradeoff.

Generally with the above approaches a speed of perhaps 6 cycles per bit can be achieved, which
is still not terribly fast with for instance a 64-bit GCD taking nearly 400 cycles. It’s this sort
of time which means it’s not usually advantageous to combine a set of divisibility tests into a
GCD.

16.3.2 Lehmer’s GCD

Lehmer’s improvement of the Euclidean algorithms is based on the observation that the initial
part of the quotient sequence depends only on the most significant parts of the inputs. The vari-
ant of Lehmer’s algorithm used in MPIR splits off the most significant two limbs, as suggested,
e.g., in “A Double-Digit Lehmer-Euclid Algorithm” by Jebelean (see Appendix B [References],
page 145). The quotients of two double-limb inputs are collected as a 2 by 2 matrix with single-
limb elements. This is done by the function mpn_hgcd2. The resulting matrix is applied to the
inputs using mpn_mul_1 and mpn_submul_1. Each iteration usually reduces the inputs by almost
one limb. In the rare case of a large quotient, no progress can be made by examining just the
most significant two limbs, and the quotient is computing using plain division.

The resulting algorithm is asymptotically O(N?), just as the Euclidean algorithm and the binary
algorithm. The quadratic part of the work are the calls to mpn_mul_1 and mpn_submul_1. For
small sizes, the linear work is also significant. There are roughly N calls to the mpn_hgcd?2
function. This function uses a couple of important optimizations:

e It uses the same relaxed notion of correctness as mpn_hgcd (see next section). This means
that when called with the most significant two limbs of two large numbers, the returned
matrix does not always correspond exactly to the initial quotient sequence for the two large
numbers; the final quotient may sometimes be one off.

e It takes advantage of the fact the quotients are usually small. The division operator is
not used, since the corresponding assembler instruction is very slow on most architectures.
(This code could probably be improved further, it uses many branches that are unfriendly
to prediction).

Chapter 16: Algorithms 123

e [t switches from double-limb calculations to single-limb calculations half-way through, when
the input numbers have been reduced in size from two limbs to one and a half.

16.3.3 Subquadratic GCD

For inputs larger than GCD_DC_THRESHOLD, GCD is computed via the HGCD (Half GCD) func-
tion, as a generalization to Lehmer’s algorithm.

Let the inputs a,b be of size N limbs each. Put S = |[N/2] + 1. Then HGCD(a,b) returns a
transformation matrix 7" with non-negative elements, and reduced numbers (¢;d) = T~ '(a;b).
The reduced numbers ¢, d must be larger than S limbs, while their difference abs(c — d) must fit
in S limbs. The matrix elements will also be of size roughly N/2.

The HGCD base case uses Lehmer’s algorithm, but with the above stop condition that returns
reduced numbers and the corresponding transformation matrix half-way through. For inputs
larger than HGCD_THRESHOLD, HGCD is computed recursively, using the divide and conquer
algorithm in “On Schonhage’s algorithm and subquadratic integer GCD computation” by Moller
(see Appendix B [References]|, page 145). The recursive algorithm consists of these main steps.

e Call HGCD recursively, on the most significant N/2 limbs. Apply the resulting matrix T}
to the full numbers, reducing them to a size just above 3N /2.

e Perform a small number of division or subtraction steps to reduce the numbers to size below
3N/2. This is essential mainly for the unlikely case of large quotients.

e Call HGCD recursively, on the most significant N/2 limbs of the reduced numbers. Apply
the resulting matrix 75 to the full numbers, reducing them to a size just above N/2.

e Compute T'=T\T5.

e Perform a small number of division and subtraction steps to satisfy the requirements, and
return.

GCD is then implemented as a loop around HGCD, similarly to Lehmer’s algorithm. Where
Lehmer repeatedly chops off the top two limbs, calls mpn_hgecd?2, and applies the resulting matrix
to the full numbers, the subquadratic GCD chops off the most significant third of the limbs (the
proportion is a tuning parameter, and 1/3 seems to be more efficient than, e.g, 1/2), calls
mpn_hgcd, and applies the resulting matrix. Once the input numbers are reduced to size below
GCD_DC_THRESHOLD, Lehmer’s algorithm is used for the rest of the work.

The asymptotic running time of both HGCD and GCD is O(M(N)log N), where M (N) is the
time for multiplying two N-limb numbers.

16.3.4 Extended GCD

The extended GCD function, or gedext, calculates ged (a, b) and also one of the cofactors x and
y satisfying azx 4 by = ged(a,b). The algorithms used for plain GCD are extended to handle this
case.

Lehmer’s algorithm is used for sizes up to GCDEXT_DC_THRESHOLD. Above this threshold,
GCDEXT is implemented as a loop around HGCD, but with more book-keeping to keep track
of the cofactors.

16.3.5 Jacobi Symbol

mpz_jacobi and mpz_kronecker are currently implemented with a simple binary algorithm
similar to that described for the GCDs (see Section 16.3.1 [Binary GCD], page 121). They’re
not very fast when both inputs are large. Lehmer’s multi-step improvement or a binary based
multi-step algorithm is likely to be better.

124 MPIR 3.0.0

When one operand fits a single limb, and that includes mpz_kronecker_ui and friends, an
initial reduction is done with either mpn_mod_1 or mpn_modexact_1_odd, followed by the binary
algorithm on a single limb. The binary algorithm is well suited to a single limb, and the whole
calculation in this case is quite efficient.

In all the routines sign changes for the result are accumulated using some bit twiddling, avoiding
table lookups or conditional jumps.

16.4 Powering Algorithms
16.4.1 Normal Powering

Normal mpz or mpf powering uses a simple binary algorithm, successively squaring and then
multiplying by the base when a 1 bit is seen in the exponent, as per Knuth section 4.6.3. The
“left to right” variant described there is used rather than algorithm A, since it’s just as easy
and can be done with somewhat less temporary memory.

16.4.2 Modular Powering

Modular powering is implemented using a 2*-ary sliding window algorithm, as per “Handbook
of Applied Cryptography” algorithm 14.85 (see Appendix B [References|, page 145). k is chosen
according to the size of the exponent. Larger exponents use larger values of k, the choice being
made to minimize the average number of multiplications that must supplement the squaring.

The modular multiplies and squares use either a simple division or the REDC method by Mont-
gomery (see Appendix B [References|, page 145). REDC is a little faster, essentially saving
N single limb divisions in a fashion similar to an exact remainder (see Section 16.2.5 [Exact
Remainder], page 120). The current REDC has some limitations. It’s only O(N?) so above
POWM_THRESHOLD division becomes faster and is used. It doesn’t attempt to detect small bases,
but rather always uses a REDC form, which is usually a full size operand. And lastly it’s only
applied to odd moduli.

16.5 Root Extraction Algorithms
16.5.1 Square Root

Square roots are taken using the “Karatsuba Square Root” algorithm by Paul Zimmermann (see
Appendix B [References], page 145).

An input n is split into four parts of k bits each, so with b = 2¥ we have n = asb®+a.b* +a,b+aq.
Part a3 must be “normalized” so that either the high or second highest bit is set. In MPIR, k is
kept on a limb boundary and the input is left shifted (by an even number of bits) to normalize.

The square root of the high two parts is taken, by recursive application of the algorithm (bot-
toming out in a one-limb Newton’s method),
s, r" = sqrtrem (azb + as)
This is an approximation to the desired root and is extended by a division to give s,r,
q,u = divrem (r'b + ay, 2s")
s=5b+q
r=ub+ay — ¢*

The normalization requirement on as means at this point s is either correct or 1 too big. r is
negative in the latter case, so
if r <0 then

r<r+2s—1

s+—s—1

Chapter 16: Algorithms 125

The algorithm is expressed in a divide and conquer form, but as noted in the paper it can also
be viewed as a discrete variant of Newton’s method, or as a variation on the schoolboy method
(no longer taught) for square roots two digits at a time.

If the remainder r is not required then usually only a few high limbs of r and u need to be cal-
culated to determine whether an adjustment to s is required. This optimization is not currently
implemented.

In the Karatsuba multiplication range this algorithm is O(2M(N/2)), where M (n) is the time
to multiply two numbers of n limbs. In the FFT multiplication range this grows to a bound of
O(6M(N/2)). In practice a factor of about 1.5 to 1.8 is found in the Karatsuba and Toom-3
ranges, growing to 2 or 3 in the FFT range.

The algorithm does all its calculations in integers and the resulting mpn_sqrtrem is used for
both mpz_sqrt and mpf_sqrt. The extended precision given by mpf_sqrt_ui is obtained by
padding with zero limbs.

16.5.2 Nth Root

Integer Nth roots are taken using Newton’s method with the following iteration, where A is the
input and n is the root to be taken.

1 A
i = — [_1 i
@it - (a?l +(n—1a)

The initial approximation a; is generated bitwise by successively powering a trial root with or
without new 1 bits, aiming to be just above the true root. The iteration converges quadratically
when started from a good approximation. When n is large more initial bits are needed to get
good convergence. The current implementation is not particularly well optimized.

16.5.3 Perfect Square

A significant fraction of non-squares can be quickly identified by checking whether the input is
a quadratic residue modulo small integers.

mpz_perfect_square_p first tests the input mod 256, which means just examining the low
byte. Only 44 different values occur for squares mod 256, so 82.8% of inputs can be immediately
identified as non-squares.

On a 32-bit system similar tests are done mod 9, 5, 7, 13 and 17, for a total 99.25% of inputs
identified as non-squares. On a 64-bit system 97 is tested too, for a total 99.62%.

These moduli are chosen because they're factors of 22* — 1 (or 2*® — 1 for 64-bits), and such a
remainder can be quickly taken just using additions (see mpn_mod_341subl).

When nails are in use moduli are instead selected by the gen-psqr.c program and applied with
an mpn_mod_1. The same 22* — 1 or 28 — 1 could be done with nails using some extra bit shifts,
but this is not currently implemented.

In any case each modulus is applied to the mpn_mod_341subl or mpn_mod_1 remainder and
a table lookup identifies non-squares. By using a “modexact” style calculation, and suitably
permuted tables, just one multiply each is required, see the code for details. Moduli are also
combined to save operations, so long as the lookup tables don’t become too big. gen-psqr.c
does all the pre-calculations.

A square root must still be taken for any value that passes these tests, to verify it’s really a
square and not one of the small fraction of non-squares that get through (ie. a pseudo-square to
all the tested bases).

126 MPIR 3.0.0

Clearly more residue tests could be done, mpz_perfect_square_p only uses a compact and
efficient set. Big inputs would probably benefit from more residue testing, small inputs might
be better off with less. The assumed distribution of squares versus non-squares in the input
would affect such considerations.

16.5.4 Perfect Power

Detecting perfect powers is required by some factorization algorithms. Currently mpz_perfect_
power_p is implemented using repeated Nth root extractions, though naturally only prime roots
need to be considered. (See Section 16.5.2 [Nth Root Algorithm]|, page 125.)

If a prime divisor p with multiplicity e can be found, then only roots which are divisors of e
need to be considered, much reducing the work necessary. To this end divisibility by a set of
small primes is checked.

16.6 Radix Conversion

Radix conversions are less important than other algorithms. A program dominated by conver-
sions should probably use a different data representation.

16.6.1 Binary to Radix

Conversions from binary to a power-of-2 radix use a simple and fast O(V) bit extraction algo-
rithm.

Conversions from binary to other radices use one of two algorithms. Sizes below GET_STR_
PRECOMPUTE_THRESHOLD use a basic O(/N?) method. Repeated divisions by " are made, where
b is the radix and n is the biggest power that fits in a limb. But instead of simply using the
remainder 7 from such divisions, an extra divide step is done to give a fractional limb representing
r/b™. The digits of r can then be extracted using multiplications by b rather than divisions.
Special case code is provided for decimal, allowing multiplications by 10 to optimize to shifts
and adds.

Above GET_STR_PRECOMPUTE_THRESHOLD a sub-quadratic algorithm is used. For an input ¢,
powers b2 of the radix are calculated, until a power between t and v/t is reached. t is then
divided by that largest power, giving a quotient which is the digits above that power, and a
remainder which is those below. These two parts are in turn divided by the second highest power,
and so on recursively. When a piece has been divided down to less than GET_STR_DC_THRESHOLD
limbs, the basecase algorithm described above is used.

The advantage of this algorithm is that big divisions can make use of the sub-quadratic divide
and conquer division (see Section 16.2.3 [Divide and Conquer Division|, page 119), and big
divisions tend to have less overheads than lots of separate single limb divisions anyway. But in
any case the cost of calculating the powers b™?" must first be overcome.

GET_STR_PRECOMPUTE_THRESHOLD and GET_STR_DC_THRESHOLD represent the same basic thing,
the point where it becomes worth doing a big division to cut the input in half. GET_STR_
PRECOMPUTE_THRESHOLD includes the cost of calculating the radix power required, whereas GET_
STR_DC_THRESHOLD assumes that’s already available, which is the case when recursing.

Since the base case produces digits from least to most significant but they want to be stored
from most to least, it’s necessary to calculate in advance how many digits there will be, or at
least be sure not to underestimate that. For MPIR the number of input bits is multiplied by
chars_per_bit_exactly from mp_bases, rounding up. The result is either correct or one too
big.

Chapter 16: Algorithms 127

Examining some of the high bits of the input could increase the chance of getting the exact
number of digits, but an exact result every time would not be practical, since in general the
difference between numbers 100. . . and 99. . . is only in the last few bits and the work to identify
99. .. might well be almost as much as a full conversion.

mpf_get_str doesn’t currently use the algorithm described here, it multiplies or divides by a
power of b to move the radix point to the just above the highest non-zero digit (or at worst one
above that location), then multiplies by " to bring out digits. This is O(N?) and is certainly
not optimal.

The r/b"™ scheme described above for using multiplications to bring out digits might be useful
for more than a single limb. Some brief experiments with it on the base case when recursing
didn’t give a noticeable improvement, but perhaps that was only due to the implementation.
Something similar would work for the sub-quadratic divisions too, though there would be the
cost of calculating a bigger radix power.

Another possible improvement for the sub-quadratic part would be to arrange for radix powers
that balanced the sizes of quotient and remainder produced, ie. the highest power would be an
b"* approximately equal to v/%, not restricted to a 2¢ factor. That ought to smooth out a graph
of times against sizes, but may or may not be a net speedup.

16.6.2 Radix to Binary

This section is out-of-date.

Conversions from a power-of-2 radix into binary use a simple and fast O(N) bitwise concatena-
tion algorithm.

Conversions from other radices use one of two algorithms. Sizes below SET_STR_THRESHOLD use
a basic O(N?) method. Groups of n digits are converted to limbs, where n is the biggest power
of the base b which will fit in a limb, then those groups are accumulated into the result by
multiplying by b and adding. This saves multi-precision operations, as per Knuth section 4.4
part E (see Appendix B [References], page 145). Some special case code is provided for decimal,
giving the compiler a chance to optimize multiplications by 10.

Above SET_STR_THRESHOLD a sub-quadratic algorithm is used. First groups of n digits are
converted into limbs. Then adjacent limbs are combined into limb pairs with xb™ + y, where z
and y are the limbs. Adjacent limb pairs are combined into quads similarly with zb6*" +y. This
continues until a single block remains, that being the result.

The advantage of this method is that the multiplications for each x are big blocks, allowing
Karatsuba and higher algorithms to be used. But the cost of calculating the powers b"%" must
be overcome. SET_STR_THRESHOLD usually ends up quite big, around 5000 digits, and on some
processors much bigger still.

SET_STR_THRESHOLD is based on the input digits (and tuned for decimal), though it might be
better based on a limb count, so as to be independent of the base. But that sort of count isn’t
used by the base case and so would need some sort of initial calculation or estimate.

The main reason SET_STR_THRESHOLD is so much bigger than the corresponding GET_STR_
PRECOMPUTE_THRESHOLD is that mpn_mul_1 is much faster than mpn_divrem_1 (often by a factor
of 10, or more).

128 MPIR 3.0.0

16.7 Other Algorithms
16.7.1 Prime Testing

This section is somewhat out-of-date.
The primality testing in mpz_probab_prime_p (see Section 5.9 [Number Theoretic Functions],
page 36) first does some trial division by small factors and then uses the Miller-Rabin probabilis-

tic primality testing algorithm, as described in Knuth section 4.5.4 algorithm P (see Appendix B
[References], page 145).

For an odd input n, and with n = ¢2* + 1 where ¢ is odd, this algorithm selects a random base
x and tests whether 29 mod n is 1 or —1, or an 2% mod n is 1, for 1 < j < k. If so then n is
probably prime, if not then n is definitely composite.

Any prime n will pass the test, but some composites do too. Such composites are known as
strong pseudoprimes to base x. No n is a strong pseudoprime to more than 1/4 of all bases
(see Knuth exercise 22), hence with x chosen at random there’s no more than a 1/4 chance a
“probable prime” will in fact be composite.

In fact strong pseudoprimes are quite rare, making the test much more powerful than this
analysis would suggest, but 1/4 is all that’s proven for an arbitrary n.

16.7.2 Factorial

This section is out-of-date.

Factorials are calculated by a combination of removal of twos, powering, and binary splitting.
The procedure can be best illustrated with an example,

23! =1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23
has factors of two removed,

23! =2'91.1.3.1.5.3.7.1.9.5.11.3.13.7.15.1.17.9.19.5.21.11.23
and the resulting terms collected up according to their multiplicity,

231 = 219 (3.5)%.(7.9.11)2.(13.15.17.19.21.23)

Each sequence such as 13.15.17.19.21.23 is evaluated by splitting into every second term, as
for instance (13.17.21).(15.19.23), and the same recursively on each half. This is implemented
iteratively using some bit twiddling.

Such splitting is more efficient than repeated Nx1 multiplies since it forms big multiplies, al-
lowing Karatsuba and higher algorithms to be used. And even below the Karatsuba threshold
a big block of work can be more efficient for the basecase algorithm.

Splitting into subsequences of every second term keeps the resulting products more nearly equal
in size than would the simpler approach of say taking the first half and second half of the
sequence. Nearly equal products are more efficient for the current multiply implementation.

16.7.3 Binomial Coefficients

n

k
sary, and then evaluating the following product simply from 7 = 2 to i = k.

(Z)z(n—k—i—l)ﬁw

=2 t

n

) if neces-
n—k

Binomial coefficients () are calculated by first arranging k < n/2 using (}) = (

Chapter 16: Algorithms 129

It’s easy to show that each denominator ¢ will divide the product so far, so the exact division
algorithm is used (see Section 16.2.4 [Exact Division], page 119).

The numerators n — k + ¢ and denominators ¢ are first accumulated into as many fit a limb, to
save multi-precision operations, though for mpz_bin_ui this applies only to the divisors, since
n is an mpz_t and n — k 4 ¢ in general won’t fit in a limb at all.

16.7.4 Fibonacci Numbers

The Fibonacci functions mpz_fib_ui and mpz_£fib2_ui are designed for calculating isolated F,
or F, ,F,,_, values efficiently.

For small n, a table of single limb values in __gmp_fib_table is used. On a 32-bit limb this
goes up to Fy7, or on a 64-bit limb up to Fy3. For convenience the table starts at F_;.

Beyond the table, values are generated with a binary powering algorithm, calculating a pair F,
and F,_; working from high to low across the bits of n. The formulas used are

Fopyr = 4F} — F2 | +2(-1)"
Fop1=F} +F |
F2k = F2k+l - FQk—l
At each step, k is the high b bits of n. If the next bit of n is 0 then Fyy,F5,_ is used, or if it’s

a 1 then Fy,q,Fy; is used, and the process repeated until all bits of n are incorporated. Notice
these formulas require just two squares per bit of n.

It’d be possible to handle the first few n above the single limb table with simple additions, using
the defining Fibonacci recurrence Fj,1 = F}j, + Fj,_1, but this is not done since it usually turns
out to be faster for only about 10 or 20 values of n, and including a block of code for just those
doesn’t seem worthwhile. If they really mattered it’d be better to extend the data table.

Using a table avoids lots of calculations on small numbers, and makes small n go fast. A bigger
table would make more small n go fast, it’s just a question of balancing size against desired
speed. For MPIR the code is kept compact, with the emphasis primarily on a good powering
algorithm.

mpz_£ib2_ui returns both F,, and F,,_;, but mpz_fib_ui is only interested in F,,. In this case
the last step of the algorithm can become one multiply instead of two squares. One of the
following two formulas is used, according as n is odd or even.

Fo, = Fip(Fy + 2F, 1)
Fopi1 = 2F, + Fy1)(2F, — F_1) +2(-1)F
Fyp.41 here is the same as above, just rearranged to be a multiply. For interest, the 2(—1)* term
both here and above can be applied just to the low limb of the calculation, without a carry or

borrow into further limbs, which saves some code size. See comments with mpz_fib_ui and the
internal mpn_fib2_ui for how this is done.

16.7.5 Lucas Numbers

mpz_lucnum?2_ui derives a pair of Lucas numbers from a pair of Fibonacci numbers with the
following simple formulas.
Ly =F,+2F,_,

Ly =2F, — F 1

mpz_lucnum_ui is only interested in L,, and some work can be saved. Trailing zero bits on n
can be handled with a single square each.

Loy = L — 2(—1)F

130 MPIR 3.0.0

And the lowest 1 bit can be handled with one multiply of a pair of Fibonacci numbers, similar
to what mpz_fib_ui does.

Lowy1 = 5F, 1 (2F, + Fy_1) — 4(—1)*
16.7.6 Random Numbers

For the urandomb functions, random numbers are generated simply by concatenating bits pro-
duced by the generator. As long as the generator has good randomness properties this will
produce well-distributed N bit numbers.

For the urandomm functions, random numbers in a range 0 < R < N are generated by taking
values R of [log, N'| bits each until one satisfies R < N. This will normally require only one
or two attempts, but the attempts are limited in case the generator is somehow degenerate and
produces only 1 bits or similar.

The Mersenne Twister generator is by Matsumoto and Nishimura (see Appendix B [References],
page 145). Tt has a non-repeating period of 219937 —1, which is a Mersenne prime, hence the name
of the generator. The state is 624 words of 32-bits each, which is iterated with one XOR and
shift for each 32-bit word generated, making the algorithm very fast. Randomness properties
are also very good and this is the default algorithm used by MPIR.

Linear congruential generators are described in many text books, for instance Knuth volume
2 (see Appendix B [References|, page 145). With a modulus M and parameters A and C, a
integer state S is iterated by the formula S <— AS 4+ C mod M. At each step the new state is a
linear function of the previous, mod M, hence the name of the generator.

In MPIR only moduli of the form 2V are supported, and the current implementation is not
as well optimized as it could be. Overheads are significant when N is small, and when N is
large clearly the multiply at each step will become slow. This is not a big concern, since the
Mersenne Twister generator is better in every respect and is therefore recommended for all
normal applications.

For both generators the current state can be deduced by observing enough output and applying
some linear algebra (over GF(2) in the case of the Mersenne Twister). This generally means
raw output is unsuitable for cryptographic applications without further hashing or the like.

16.8 Assembler Coding

The assembler subroutines in MPIR are the most significant source of speed at small to moderate
sizes. At larger sizes algorithm selection becomes more important, but of course speedups in
low level routines will still speed up everything proportionally.

Carry handling and widening multiplies that are important for MPIR, can’t be easily expressed
in C. GCC asm blocks help a lot and are provided in longlong.h, but hand coding low level
routines invariably offers a speedup over generic C by a factor of anything from 2 to 10.

16.8.1 Code Organisation

The various mpn subdirectories contain machine-dependent code, written in C or assembler. The
mpn/generic subdirectory contains default code, used when there’s no machine-specific version
of a particular file.

Fach mpn subdirectory is for an ISA family. Generally 32-bit and 64-bit variants in a family
cannot share code and have separate directories. Within a family further subdirectories may
exist for CPU variants.

In each directory a nails subdirectory may exist, holding code with nails support for that CPU
variant. A NAILS_SUPPORT directive in each file indicates the nails values the code handles.

Chapter 16: Algorithms 131

Nails code only exists where it’s faster, or promises to be faster, than plain code. There’s no
effort put into nails if they’re not going to enhance a given CPU.

16.8.2 Assembler Basics

mpn_addmul_1 and mpn_submul_1 are the most important routines for overall MPIR perfor-
mance. All multiplications and divisions come down to repeated calls to these. mpn_add_n,
mpn_sub_n, mpn_lshift and mpn_rshift are next most important.

On some CPUs assembler versions of the internal functions mpn_mul_basecase and mpn_sqr_
basecase give significant speedups, mainly through avoiding function call overheads. They can
also potentially make better use of a wide superscalar processor, as can bigger primitives like
mpn_addmul_2 or mpn_addmul_4.

The restrictions on overlaps between sources and destinations (see Chapter 8 [Low-level Func-
tions|, page 58) are designed to facilitate a variety of implementations. For example, knowing
mpn_add_n won’t have partly overlapping sources and destination means reading can be done far
ahead of writing on superscalar processors, and loops can be vectorized on a vector processor,
depending on the carry handling.

16.8.3 Carry Propagation

The problem that presents most challenges in MPIR is propagating carries from one limb to the
next. In functions like mpn_addmul_1 and mpn_add_n, carries are the only dependencies between
limb operations.

On processors with carry flags, a straightforward CISC style adc is generally best. AMD K6
mpn_addmul_1 however is an example of an unusual set of circumstances where a branch works
out better.

On RISC processors generally an add and compare for overflow is used. This sort of thing can
be seen in mpn/generic/aors_n.c. Some carry propagation schemes require 4 instructions,
meaning at least 4 cycles per limb, but other schemes may use just 1 or 2. On wide superscalar
processors performance may be completely determined by the number of dependent instructions
between carry-in and carry-out for each limb.

On vector processors good use can be made of the fact that a carry bit only very rarely propagates
more than one limb. When adding a single bit to a limb, there’s only a carry out if that limb was
0xFF. . .FF which on random data will be only 1 in 2mP-Pits_per_1imb p,;/cray/add_n.c is
an example of this, it adds all limbs in parallel, adds one set of carry bits in parallel and then
only rarely needs to fall through to a loop propagating further carries.

On the x86s, GCC (as of version 2.95.2) doesn’t generate particularly good code for the RISC
style idioms that are necessary to handle carry bits in C. Often conditional jumps are generated
where adc or sbb forms would be better. And so unfortunately almost any loop involving carry
bits needs to be coded in assembler for best results.

16.8.4 Cache Handling
MPIR aims to perform well both on operands that fit entirely in L.1 cache and those which don’t.

Basic routines like mpn_add_n or mpn_lshift are often used on large operands, so L2 and main
memory performance is important for them. mpn_mul_1 and mpn_addmul_1 are mostly used
for multiply and square basecases, so L1 performance matters most for them, unless assembler
versions of mpn_mul_basecase and mpn_sqr_basecase exist, in which case the remaining uses
are mostly for larger operands.

132 MPIR 3.0.0

For L2 or main memory operands, memory access times will almost certainly be more than
the calculation time. The aim therefore is to maximize memory throughput, by starting a load
of the next cache line while processing the contents of the previous one. Clearly this is only
possible if the chip has a lock-up free cache or some sort of prefetch instruction. Most current
chips have both these features.

Prefetching sources combines well with loop unrolling, since a prefetch can be initiated once per
unrolled loop (or more than once if the loop covers more than one cache line).

On CPUs without write-allocate caches, prefetching destinations will ensure individual stores
don’t go further down the cache hierarchy, limiting bandwidth. Of course for calculations which
are slow anyway, like mpn_divrem_1, write-throughs might be fine.

The distance ahead to prefetch will be determined by memory latency versus throughput. The
aim of course is to have data arriving continuously, at peak throughput. Some CPUs have limits
on the number of fetches or prefetches in progress.

If a special prefetch instruction doesn’t exist then a plain load can be used, but in that case care
must be taken not to attempt to read past the end of an operand, since that might produce a
segmentation violation.

Some CPUs or systems have hardware that detects sequential memory accesses and initiates
suitable cache movements automatically, making life easy.

16.8.5 Functional Units

When choosing an approach for an assembler loop, consideration is given to what operations
can execute simultaneously and what throughput can thereby be achieved. In some cases an
algorithm can be tweaked to accommodate available resources.

Loop control will generally require a counter and pointer updates, costing as much as 5 in-
structions, plus any delays a branch introduces. CPU addressing modes might reduce pointer
updates, perhaps by allowing just one updating pointer and others expressed as offsets from it,
or on CISC chips with all addressing done with the loop counter as a scaled index.

The final loop control cost can be amortised by processing several limbs in each iteration (see
Section 16.8.9 [Assembler Loop Unrolling], page 134). This at least ensures loop control isn’t a
big fraction the work done.

Memory throughput is always a limit. If perhaps only one load or one store can be done per
cycle then 3 cycles/limb will the top speed for “binary” operations like mpn_add_n, and any
code achieving that is optimal.

Integer resources can be freed up by having the loop counter in a float register, or by pressing
the float units into use for some multiplying, perhaps doing every second limb on the float side
(see Section 16.8.6 [Assembler Floating Point|, page 132).

Float resources can be freed up by doing carry propagation on the integer side, or even by doing
integer to float conversions in integers using bit twiddling.

16.8.6 Floating Point

Floating point arithmetic is used in MPIR for multiplications on CPUs with poor integer multi-
pliers. It’s mostly useful for mpn_mul_1, mpn_addmul_1 and mpn_submul_1 on 64-bit machines,
and mpn_mul_basecase on both 32-bit and 64-bit machines.

With IEEE 53-bit double precision floats, integer multiplications producing up to 53 bits will give
exact results. Breaking a 64x64 multiplication into eight 16x32 — 48 bit pieces is convenient.

Chapter 16: Algorithms 133

With some care though six 21x32 — 53 bit products can be used, if one of the lower two 21-bit
pieces also uses the sign bit.

For the mpn_mul_1 family of functions on a 64-bit machine, the invariant single limb is split
at the start, into 3 or 4 pieces. Inside the loop, the bignum operand is split into 32-bit pieces.
Fast conversion of these unsigned 32-bit pieces to floating point is highly machine-dependent. In
some cases, reading the data into the integer unit, zero-extending to 64-bits, then transferring
to the floating point unit back via memory is the only option.

Converting partial products back to 64-bit limbs is usually best done as a signed conversion.
Since all values are smaller than 253, signed and unsigned are the same, but most processors
lack unsigned conversions.

Here is a diagram showing 16x32 bit products for an mpn_mul_1 or mpn_addmul_1 with a 64-bit
limb. The single limb operand V is split into four 16-bit parts. The multi-limb operand U is
split in the loop into two 32-bit parts.

| v48 | v32 | w16 [v00 | V Operand
X ’ u32 ‘ 100 ‘ U Operand (one limb)

’ 400 x v00 ‘ p00 48-bit products
| w00 xvl6 | pl6
’ 100 X v32 ‘ p32
] 100 x v48 | p48
| u32x000 | 32
| ud2xwl6 | 48
| u32xw32 | r64
| u32xwvd8 | 80

p32 and 732 can be summed using floating-point addition, and likewise p48 and r48. p00 and
pl6 can be summed with 764 and 780 from the previous iteration.

For each loop then, four 49-bit quantities are transfered to the integer unit, aligned as follows,

64 bits | 64 bits
— |

| p00+r64 | 00

| pl6 + 780’ | i16

[p32+7132 | i32

| p48+ 748 | i48

The challenge then is to sum these efficiently and add in a carry limb, generating a low 64-bit
result limb and a high 33-bit carry limb (i48 extends 33 bits into the high half).

16.8.7 SIMD Instructions

The single-instruction multiple-data support in current microprocessors is aimed at signal pro-
cessing algorithms where each data point can be treated more or less independently. There’s
generally not much support for propagating the sort of carries that arise in MPIR.

134 MPIR 3.0.0

SIMD multiplications of say four 16x16 bit multiplies only do as much work as one 32x32 from
MPIR’s point of view, and need some shifts and adds besides. But of course if say the SIMD
form is fully pipelined and uses less instruction decoding then it may still be worthwhile.

On the x86 chips, MMX has so far found a use in mpn_rshift and mpn_1shift, and is used in a
special case for 16-bit multipliers in the P55 mpn_mul_1. SSE2 is used for Pentium 4 mpn_mul_1,
mpn_addmul_1, and mpn_submul_1.

16.8.8 Software Pipelining

Software pipelining consists of scheduling instructions around the branch point in a loop. For
example a loop might issue a load not for use in the present iteration but the next, thereby
allowing extra cycles for the data to arrive from memory.

Naturally this is wanted only when doing things like loads or multiplies that take several cycles
to complete, and only where a CPU has multiple functional units so that other work can be
done in the meantime.

A pipeline with several stages will have a data value in progress at each stage and each loop
iteration moves them along one stage. This is like juggling.

If the latency of some instruction is greater than the loop time then it will be necessary to unroll,
so one register has a result ready to use while another (or multiple others) are still in progress.
(see Section 16.8.9 [Assembler Loop Unrolling], page 134).

16.8.9 Loop Unrolling

Loop unrolling consists of replicating code so that several limbs are processed in each loop.
At a minimum this reduces loop overheads by a corresponding factor, but it can also allow
better register usage, for example alternately using one register combination and then another.
Judicious use of m4 macros can help avoid lots of duplication in the source code.

Any amount of unrolling can be handled with a loop counter that’s decremented by N each
time, stopping when the remaining count is less than the further N the loop will process. Or by
subtracting N at the start, the termination condition becomes when the counter C' is less than
0 (and the count of remaining limbs is C' + N).

Alternately for a power of 2 unroll the loop count and remainder can be established with a shift
and mask. This is convenient if also making a computed jump into the middle of a large loop.

The limbs not a multiple of the unrolling can be handled in various ways, for example

e A simple loop at the end (or the start) to process the excess. Care will be wanted that it
isn’t too much slower than the unrolled part.

e A set of binary tests, for example after an 8-limb unrolling, test for 4 more limbs to process,
then a further 2 more or not, and finally 1 more or not. This will probably take more code
space than a simple loop.

e A switch statement, providing separate code for each possible excess, for example an 8-limb
unrolling would have separate code for 0 remaining, 1 remaining, etc, up to 7 remaining.
This might take a lot of code, but may be the best way to optimize all cases in combination
with a deep pipelined loop.

e A computed jump into the middle of the loop, thus making the first iteration handle the
excess. This should make times smoothly increase with size, which is attractive, but setups
for the jump and adjustments for pointers can be tricky and could become quite difficult in
combination with deep pipelining.

Chapter 16: Algorithms 135

16.8.10 Writing Guide

This is a guide to writing software pipelined loops for processing limb vectors in assembler.

First determine the algorithm and which instructions are needed. Code it without unrolling or
scheduling, to make sure it works. On a 3-operand CPU try to write each new value to a new
register, this will greatly simplify later steps.

Then note for each instruction the functional unit and/or issue port requirements. If an instruc-
tion can use either of two units, like U0 or Ul then make a category “U0/U1”. Count the total
using each unit (or combined unit), and count all instructions.

Figure out from those counts the best possible loop time. The goal will be to find a perfect
schedule where instruction latencies are completely hidden. The total instruction count might
be the limiting factor, or perhaps a particular functional unit. It might be possible to tweak the
instructions to help the limiting factor.

Suppose the loop time is N, then make N issue buckets, with the final loop branch at the end of
the last. Now fill the buckets with dummy instructions using the functional units desired. Run
this to make sure the intended speed is reached.

Now replace the dummy instructions with the real instructions from the slow but correct loop
you started with. The first will typically be a load instruction. Then the instruction using that
value is placed in a bucket an appropriate distance down. Run the loop again, to check it still
runs at target speed.

Keep placing instructions, frequently measuring the loop. After a few you will need to wrap
around from the last bucket back to the top of the loop. If you used the new-register for new-
value strategy above then there will be no register conflicts. If not then take care not to clobber
something already in use. Changing registers at this time is very error prone.

The loop will overlap two or more of the original loop iterations, and the computation of one
vector element result will be started in one iteration of the new loop, and completed one or
several iterations later.

The final step is to create feed-in and wind-down code for the loop. A good way to do this is
to make a copy (or copies) of the loop at the start and delete those instructions which don’t
have valid antecedents, and at the end replicate and delete those whose results are unwanted
(including any further loads).

The loop will have a minimum number of limbs loaded and processed, so the feed-in code must
test if the request size is smaller and skip either to a suitable part of the wind-down or to special
code for small sizes.

136 MPIR 3.0.0

17 Internals

This chapter is provided only for informational purposes and the various internals described
here may change in future MPIR releases. Applications expecting to be compatible with future
releases should use only the documented interfaces described in previous chapters.

17.1 Integer Internals

mpz_t variables represent integers using sign and magnitude, in space dynamically allocated and
reallocated. The fields are as follows.

_mp_size The number of limbs, or the negative of that when representing a negative integer.
Zero is represented by _mp_size set to zero, in which case the _mp_d data is unused.

_mp_d A pointer to an array of limbs which is the magnitude. These are stored “little
endian” as per the mpn functions, so _mp_d[0] is the least significant limb and _mp_
d[ABS(_mp_size)-1] is the most significant. Whenever _mp_size is non-zero, the
most significant limb is non-zero.

Currently there’s always at least one limb allocated, so for instance mpz_set_ui
never needs to reallocate, and mpz_get_ui can fetch _mp_d[0] unconditionally
(though its value is then only wanted if _mp_size is non-zero).

_mp_alloc
_mp_alloc is the number of limbs currently allocated at _mp_d, and naturally _mp_
alloc >= ABS(_mp_size). When an mpz routine is about to (or might be about to)
increase _mp_size, it checks _mp_alloc to see whether there’s enough space, and
reallocates if not. MPZ_REALLOC is generally used for this.

The various bitwise logical functions like mpz_and behave as if negative values were twos com-
plement. But sign and magnitude is always used internally, and necessary adjustments are made
during the calculations. Sometimes this isn’t pretty, but sign and magnitude are best for other
routines.

Some internal temporary variables are setup with MPZ_TMP_INIT and these have _mp_d space
obtained from TMP_ALLOC rather than the memory allocation functions. Care is taken to ensure
that these are big enough that no reallocation is necessary (since it would have unpredictable
consequences).

_mp_size and _mp_alloc are int, although mp_size_t is usually a long. This is done to make
the fields just 32 bits on some 64 bits systems, thereby saving a few bytes of data space but still
providing plenty of range.

17.2 Rational Internals

mpq_t variables represent rationals using an mpz_t numerator and denominator (see Section 17.1
[Integer Internals|, page 136).

The canonical form adopted is denominator positive (and non-zero), no common factors between
numerator and denominator, and zero uniquely represented as 0/1.

It’s believed that casting out common factors at each stage of a calculation is best in general. A
GCD is an O(N?) operation so it’s better to do a few small ones immediately than to delay and
have to do a big one later. Knowing the numerator and denominator have no common factors
can be used for example in mpq_mul to make only two cross GCDs necessary, not four.

This general approach to common factors is badly sub-optimal in the presence of simple factor-
izations or little prospect for cancellation, but MPIR has no way to know when this will occur.

Chapter 17: Internals 137

As per Section 3.11 [Efficiency], page 21, that’s left to applications. The mpq_t framework might
still suit, with mpq_numref and mpq_denref for direct access to the numerator and denominator,
or of course mpz_t variables can be used directly.

17.3 Float Internals

Efficient calculation is the primary aim of MPIR floats and the use of whole limbs and simple
rounding facilitates this.

mpf _t floats have a variable precision mantissa and a single machine word signed exponent. The
mantissa is represented using sign and magnitude.

most significant limb least significant limb

_mp_exp ——— _mp-d

- < radix point

_mp_size

The fields are as follows.

_mp_size The number of limbs currently in use, or the negative of that when representing a
negative value. Zero is represented by _mp_size and _mp_exp both set to zero, and
in that case the _mp_d data is unused. (In the future _mp_exp might be undefined
when representing zero.)

_mp_prec The precision of the mantissa, in limbs. In any calculation the aim is to produce
_mp_prec limbs of result (the most significant being non-zero).

_mp_d A pointer to the array of limbs which is the absolute value of the mantissa. These are
stored “little endian” as per the mpn functions, so _mp_d[0] is the least significant
limb and _mp_d[ABS(_mp_size)-1] the most significant.

The most significant limb is always non-zero, but there are no other restrictions on
its value, in particular the highest 1 bit can be anywhere within the limb.

_mp_prec+1 limbs are allocated to _mp_d, the extra limb being for convenience (see
below). There are no reallocations during a calculation, only in a change of precision
with mpf_set_prec.

_mp_exp The exponent, in limbs, determining the location of the implied radix point. Zero
means the radix point is just above the most significant limb. Positive values mean
a radix point offset towards the lower limbs and hence a value > 1, as for example
in the diagram above. Negative exponents mean a radix point further above the
highest limb.
Naturally the exponent can be any value, it doesn’t have to fall within the limbs as
the diagram shows, it can be a long way above or a long way below. Limbs other
than those included in the {_mp_d, _mp_size} data are treated as zero.

_mp_size and _mp_prec are int, although mp_size_t is usually a long. This is done to make
the fields just 32 bits on some 64 bits systems, thereby saving a few bytes of data space but still
providing plenty of range.

The following various points should be noted.

Low Zeros The least significant limbs _mp_d[0] etc can be zero, though such low zeros can
always be ignored. Routines likely to produce low zeros check and avoid them to

138 MPIR 3.0.0

save time in subsequent calculations, but for most routines they’re quite unlikely
and aren’t checked.

Mantissa Size Range
The _mp_size count of limbs in use can be less than _mp_prec if the value can be
represented in less. This means low precision values or small integers stored in a
high precision mpf_t can still be operated on efficiently.

_mp_size can also be greater than _mp_prec. Firstly a value is allowed to use all
of the _mp_prec+1 limbs available at _mp_d, and secondly when mpf_set_prec_raw
lowers _mp_prec it leaves _mp_size unchanged and so the size can be arbitrarily
bigger than _mp_prec.

Rounding All rounding is done on limb boundaries. Calculating _mp_prec limbs with the high
non-zero will ensure the application requested minimum precision is obtained.

The use of simple “trunc” rounding towards zero is efficient, since there’s no need
to examine extra limbs and increment or decrement.

Bit Shifts Since the exponent is in limbs, there are no bit shifts in basic operations like mpf _
add and mpf_mul. When differing exponents are encountered all that’s needed is to
adjust pointers to line up the relevant limbs.

Of course mpf_mul_2exp and mpf_div_2exp will require bit shifts, but the choice
is between an exponent in limbs which requires shifts there, or one in bits which
requires them almost everywhere else.

Use of _mp_prec+1 Limbs
The extra limb on _mp_d (_mp_prec+1 rather than just _mp_prec) helps when an
mpf routine might get a carry from its operation. mpf_add for instance will do an
mpn_add of _mp_prec limbs. If there’s no carry then that’s the result, but if there is a
carry then it’s stored in the extra limb of space and _mp_size becomes _mp_prec+1.

Whenever _mp_prec+1 limbs are held in a variable, the low limb is not needed for
the intended precision, only the _mp_prec high limbs. But zeroing it out or moving
the rest down is unnecessary. Subsequent routines reading the value will simply take
the high limbs they need, and this will be _mp_prec if their target has that same
precision. This is no more than a pointer adjustment, and must be checked anyway
since the destination precision can be different from the sources.

Copy functions like mpf_set will retain a full _mp_prec+1 limbs if available. This
ensures that a variable which has _mp_size equal to _mp_prec+1 will get its full
exact value copied. Strictly speaking this is unnecessary since only _mp_prec limbs
are needed for the application’s requested precision, but it’s considered that an mpf _
set from one variable into another of the same precision ought to produce an exact

copy.

Application Precisions
__GMPF_BITS_TO_PREC converts an application requested precision to an _mp_prec.
The value in bits is rounded up to a whole limb then an extra limb is added since
the most significant limb of _mp_d is only non-zero and therefore might contain only
one bit.

__GMPF_PREC_TO_BITS does the reverse conversion, and removes the extra limb from
_mp_prec before converting to bits. The net effect of reading back with mpf_get_
prec is simply the precision rounded up to a multiple of mp_bits_per_limb.

Note that the extra limb added here for the high only being non-zero is in addition
to the extra limb allocated to _mp_d. For example with a 32-bit limb, an application
request for 250 bits will be rounded up to 8 limbs, then an extra added for the high
being only non-zero, giving an _mp_prec of 9. _mp_d then gets 10 limbs allocated.

Chapter 17: Internals 139

Reading back with mpf_get_prec will take _mp_prec subtract 1 limb and multiply
by 32, giving 256 bits.

Strictly speaking, the fact the high limb has at least one bit means that a float with,
say, 3 limbs of 32-bits each will be holding at least 65 bits, but for the purposes of
mpf _t it’s considered simply to be 64 bits, a nice multiple of the limb size.

17.4 Raw Output Internals

mpz_out_raw uses the following format.

size data bytes

The size is 4 bytes written most significant byte first, being the number of subsequent data
bytes, or the twos complement negative of that when a negative integer is represented. The
data bytes are the absolute value of the integer, written most significant byte first.

The most significant data byte is always non-zero, so the output is the same on all systems,
irrespective of limb size.

In GMP 1, leading zero bytes were written to pad the data bytes to a multiple of the limb size.
mpz_inp_raw will still accept this, for compatibility.

The use of “big endian” for both the size and data fields is deliberate, it makes the data easy to
read in a hex dump of a file. Unfortunately it also means that the limb data must be reversed
when reading or writing, so neither a big endian nor little endian system can just read and write
_mp_d.

17.5 C++ Interface Internals

A system of expression templates is used to ensure something like a=b+c turns into a simple call
to mpz_add etc. For mpf_class the scheme also ensures the precision of the final destination
is used for any temporaries within a statement like f=wxx+y*z. These are important features
which a naive implementation cannot provide.

A simplified description of the scheme follows. The true scheme is complicated by the fact that
expressions have different return types. For detailed information, refer to the source code.

To perform an operation, say, addition, we first define a “function object” evaluating it,

struct __gmp_binary_plus

{

static void eval(mpf_t f, mpf_t g, mpf_t h) { mpf_add(f, g, h); }
};

And an “additive expression” object,

__gmp_expr<__gmp_binary_expr<mpf_class, mpf_class, __gmp_binary_plus> >
operator+(const mpf_class &f, const mpf_class &g)
{

return __gmp_expr

<__gmp_binary_expr<mpf_class, mpf_class, __gmp_binary_plus> >(f, g);

}

The seemingly redundant __gmp_expr<__gmp_binary_expr<...>> is used to encapsulate any
possible kind of expression into a single template type. In fact even mpf_class etc are typedef
specializations of __gmp_expr.

140 MPIR 3.0.0

Next we define assignment of __gmp_expr to mpf_class.

template <class T>
mpf_class & mpf_class::operator=(const __gmp_expr<T> &expr)
{

expr.eval(this->get_mpf_t(), this->precision());

return *this;

}

template <class Op>
void __gmp_expr<__gmp_binary_expr<mpf_class, mpf_class, Op> >::eval
(mpf_t f, mp_bitcnt_t precision)
{
Op::eval(f, expr.vall.get_mpf_t(), expr.val2.get_mpf_t());
b

where expr.vall and expr.val2 are references to the expression’s operands (here expr is the
__gmp_binary_expr stored within the __gmp_expr).

This way, the expression is actually evaluated only at the time of assignment, when the required
precision (that of £) is known. Furthermore the target mpf_t is now available, thus we can call
mpf _add directly with £ as the output argument.

Compound expressions are handled by defining operators taking subexpressions as their argu-
ments, like this:

template <class T, class U>

--gmp_expr

<__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, __gmp_binary_plus> >
operator+(const __gmp_expr<T> &exprl, const __gmp_expr<U> &expr2)

{
return __gmp_expr
<__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, __gmp_binary_plus> >
(exprl, expr2);
}

And the corresponding specializations of __gmp_expr: :eval

template <class T, class U, class Op>
void __gmp_expr

<__gmp_binary_expr<__gmp_expr<T>
(mpf_t f, mp_bitcnt_t precision)

b —_——

gmp_expr<U>, Op> >::eval

{
// declare two temporaries
mpf_class templ(expr.vall, precision), temp2(expr.val2, precision);
Op::eval(f, templ.get_mpf_t(), temp2.get_mpf_t());

}

The expression is thus recursively evaluated to any level of complexity and all subexpressions
are evaluated to the precision of f.

Appendix A: Contributors 141

Appendix A Contributors

Torbjorn Granlund wrote the original GMP library and is still developing and maintaining it.
Several other individuals and organizations have contributed to GMP in various ways. Here is
a list in chronological order:

Gunnar Sjoedin and Hans Riesel helped with mathematical problems in early versions of the
library.

Richard Stallman contributed to the interface design and revised the first version of this manual.

Brian Beuning and Doug Lea helped with testing of early versions of the library and made
creative suggestions.

John Amanatides of York University in Canada contributed the function mpz_probab_prime_p.

Paul Zimmermann of Inria sparked the development of GMP 2, with his comparisons between
bignum packages.

Ken Weber (Kent State University, Universidade Federal do Rio Grande do Sul) contributed
mpz_gcd, mpz_divexact, mpn_gcd, and mpn_bdivmod, partially supported by CNPq (Brazil)
grant 301314194-2.

Per Bothner of Cygnus Support helped to set up GMP to use Cygnus’ configure. He has also
made valuable suggestions and tested numerous intermediary releases.

Joachim Hollman was involved in the design of the mpf interface, and in the mpz design revisions
for version 2.

Bennet Yee contributed the initial versions of mpz_jacobi and mpz_legendre.

Andreas Schwab contributed the files mpn/m68k/1shift.S and mpn/m68k/rshift.S (now in
.asm form).

The development of floating point functions of GNU MP 2, were supported in part by the
ESPRIT-BRA (Basic Research Activities) 6846 project POSSO (POlynomial System SOlving).

GNU MP 2 was finished and released by SWOX AB, SWEDEN, in cooperation with the IDA
Center for Computing Sciences, USA.

Robert Harley of Inria, France and David Seal of ARM, England, suggested clever improvements
for population count.

Robert Harley also wrote highly optimized Karatsuba and 3-way Toom multiplication functions
for GMP 3. He also contributed the ARM assembly code.

Torsten Ekedahl of the Mathematical department of Stockholm University provided significant
inspiration during several phases of the GMP development. His mathematical expertise helped
improve several algorithms.

Paul Zimmermann wrote the Divide and Conquer division code, the REDC code, the REDC-
based mpz_powm code, the FFT multiply code, and the Karatsuba square root code. He also
rewrote the Toom3 code for GMP 4.2. The ECMNET project Paul is organizing was a driving
force behind many of the optimizations in GMP 3.

Linus Nordberg wrote the new configure system based on autoconf and implemented the new
random functions.

Kent Boortz made the Mac OS 9 port.

142 MPIR 3.0.0

Kevin Ryde worked on a number of things: optimized x86 code, m4 asm macros, parameter
tuning, speed measuring, the configure system, function inlining, divisibility tests, bit scanning,
Jacobi symbols, Fibonacci and Lucas number functions, printf and scanf functions, perl interface,
demo expression parser, the algorithms chapter in the manual, gmpasm-mode.el, and various
miscellaneous improvements elsewhere.

Steve Root helped write the optimized alpha 21264 assembly code.
Gerardo Ballabio wrote the gmpxx.h C++ class interface and the C++ istream input routines.

GNU MP 4 was finished and released by Torbjorn Granlund and Kevin Ryde. Torbjorn’s work
was partially funded by the IDA Center for Computing Sciences, USA.

Jason Moxham rewrote mpz_fac_ui.

Pedro Gimeno implemented the Mersenne Twister and made other random number improve-
ments.

(This list is chronological, not ordered after significance. If you have contributed to GMP/MPIR
but are not listed above, please tell http://groups.google.com/group/mpir-devel about the
omission!)

Thanks go to Hans Thorsen for donating an SGI system for the GMP test system environment.

In 2008 GMP was forked and gave rise to the MPIR (Multiple Precision Integers and Rationals)
project. In 2010 version 2.0.0 of MPIR switched to LGPL v3+ and much code from GMP was
again incorporated into MPIR.

The MPIR project has largely been a collaboration of William Hart, Brian Gladman and Jason
Moxham. MPIR code not obtained from GMP and not specifically mentioned elsewhere below
is likely written by one of these three.

William Hart did much of the early MPIR coding including build system fixes. His contributions
also include Toom 4 and 7 code and variants, extended GCD based on Niels Mollers nged work,
asymptotically fast division code. He does much of the release management work.

Brian Gladman wrote and maintains MSVC project files. He has also done much of the con-
version of assembly code to yasm format. He rewrote the benchmark program and developed
MSVC ports of tune, speed, try and the benchmark code. He helped with many aspects of the
merging of GMP code into MPIR after the switch to LGPL v3+.

Jason Moxham has contributed a great deal of x86 assembly code. He has also contributed
improved root code and mulhi and mullo routines and implemented Peter Montgomery’s single
limb remainder algorithm. He has also contributed a command line build system for Windows
and numerous build system fixes.

The following people have either contributed directly to the MPIR project, made code available
on their websites or contributed code to the official GNU project which has been used in MPIR.

Jason Martin wrote some fast assembly patches for Core 2 and converted them to intel format.
He also did the initial merge of Niels Moller’s fast GCD patches. He wrote fast addmul functions
for Itanium.

Gonzalo Tornaria helped patch config.guess and associated files to distinguish modern processors.
He also patched mpirbench.

Michael Abshoff helped resolve some build issues on various platforms. He served for a while as
release manager for the MPIR, project.

http://groups.google.com/group/mpir-devel

Appendix A: Contributors 143

Mariah Lennox contributed patches to mpirbench and various build failure reports. She has also
reported gce bugs found during MPIR development.

Niels Moller wrote the fast nged code for computing integer GCD, the quadratic Hensel division
code and precomputed inverse code for Euclidean division, along with fast jacobi symbols code.
He also made contributions to the Toom multiply code, especially helper functions to simplify
Toom evaluations.

Burcin Erocal helped with build testing on Pentium-D
Pierrick Gaudry provided initial AMD 64 assembly support and revised the FFT code.

Paul Zimmermann provided an mpz implementation of Toom 4, wrote much of the FFT code,
wrote some of the rootrem code and contributed invert.c for computing precomputed inverses.

Alexander Kruppa revised the FF'T code and helped write and superoptimise assembly code for
Skylake, Haswell and Bulldozer and helped write a superoptimiser.

Torbjorn Granlund revised the FFT code and wrote a lot of division code, including the quadratic
Euclidean division code, many parts of the divide and conquer division code, both Hensel and
FEuclidean, and his code was also reused for parts of the asymptotically fast division code. He
also helped write the root code and wrote much of the Itanium assembly code and a couple of
Core 2 assembly functions and part of the basecase middle product assembly code for x86 64 bit.
He also wrote the improved string input and output code and made improvements to the GCD
and extended GCD code. He also contributed the nextprime code and coauthored the bin_uiui
code. He also wrote or maintained the binvert, mullow_n_basecase, powlo, redc_n code and the
powm and powm_ui improvements. Torbjorn is also responsible for numerous other bits and
pieces that have been used from the GNU project.

Marco Bodrato and Alberto Zanoni suggested the unbalanced multiply strategy and found op-
timal Toom multiplication sequences.

Marco Bodrato wrote an mpz implementation of the Toom 7 code and wrote most of the Toom
8.5 multiply and squaring code. He also helped write the divide and conquer Euclidean division
code. He also contributed many improved number theoretical functions including factorial,
multi-factorial, primorial, n-choose-k.

Marc Glisse improved gmpxx.h
Robert Gerbicz contributed fast factorial code.
Martin Boij made assorted contributions to the nextprime code.

David Harvey wrote fast middle product code and divide and conquer approximate quotient
code for both Euclidean and Hensel division and contributed to the quadratic Hensel code.

T. R. Nicely wrote primality tests used in the benchmark code.

Jeff Gilchrist assisted with the porting of T. R. Nicely’s primality code to MPIR and helped
with tuning.

David Kirkby helped with build testing on Sun servers
Peter Shrimpton wrote the BPSW primality test used up to GMP_LIMB_BITS.

Thanks to Microsoft for supporting Jason Moxham to work on a command line build system for
Windows and some assembly improvements for Windows.

144 MPIR 3.0.0

Thanks to William Stein for giving us access to his sage.math machines for testing and for
hosting the MPIR website, and for supporting us in inumerably many other ways.

Minh Van Nguyen served as release manager for MPIR 2.1.0.
Case Vanhorsen helped with release testing.

David Cleaver filed a bug report.

Julien Puydt provided tuning values.

Leif Lionhardy supplied build patches and provided tuning values.

Jean-Pierre Flori ported the powm, powm_ui improvements from GMP, supplied many build
system patches and improvements and provided tuning values.

Thanks to an anonymous Japanese contributor for assembly improvements
Marshall Hampton reported an issue on apple machines

Jens Nurmann contributed significant quantities of Skylake assembly code and contributed as-
sembly improvements that have been used elsewhere.

Alex Best wrote an assembly superoptimiser.

Vincent Delecroix ported mpq_cmp_z from GMP.

Sisyphus (Rob) submitted tuning values.

sav-ix (Alexander) provided a patch for t-locale on Windows.

Isurus Fernando provided tuning values, numerous build system patches, did release testing and
helped with continuous integration.

Alex Dyachenko wrote mpir.net for interfacing MPIR to .net languages.
Tommy Hoffman supplied a sed patch.

Averkhaturau fixed a C++ compilation problem.

Marcell Keller fixed a sign conversion bug.

Sergey Taymanov fixed some Windows build file issues.

jengelh reported a bug and helped with build testing

Appendix B: References 145

Appendix B References

B.1 Books

Jonathan M. Borwein and Peter B. Borwein, “Pi and the AGM: A Study in Analytic
Number Theory and Computational Complexity”, Wiley, 1998.

Henri Cohen, “A Course in Computational Algebraic Number Theory”, Graduate Texts in
Mathematics number 138, Springer-Verlag, 1993.
http://www.math.u-bordeaux.fr/~cohen/

Richard Crandall, Carl Pomerance, “Prime Numbers: A Computational Perspective” 2nd
edition, Springer, 2005.

Donald E. Knuth, “The Art of Computer Programming”, volume 2, “Seminumerical Algo-
rithms”, 3rd edition, Addison-Wesley, 1998.

http://www-cs-faculty.stanford.edu/ knuth/taocp.html

John D. Lipson, “Elements of Algebra and Algebraic Computing”, The Benjamin Cummings
Publishing Company Inc, 1981.

Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, “Handbook of Applied
Cryptography”, http://www.cacr.math.uwaterloo.ca/hac/

Richard M. Stallman, “Using and Porting GCC”, Free Software Foundation, 1999, available
online http://gcc.gnu.org/onlinedocs/, and in the GCC package ftp://ftp.gnu.org/
gnu/gcc/

B.2 Papers

Dan Bernstein, “Detecting perfect powers in essentially linear time”, Math. Comp. (67)
pp- 1253-1283, 1998.

Yves Bertot, Nicolas Magaud and Paul Zimmermann, “A Proof of GMP Square Root”,
Journal of Automated Reasoning, volume 29, 2002, pp. 225-252. Also available online as
INRIA Research Report 4475, June 2001, http://wuw.inria.fr/rrrt/rr-4475.html
Marco Bodrato, Alberto Zanoni, “Integer and Polynomial Multiplication: Towards optimal
Toom-Cook Matrices”, ISAAC 2007 Proceedings, Ontario, Canada, July 29 - August 1,
2007, ACM Press. Available online at http://1n.bodrato.it/issac2007_pdf

Marco Bodrato, “High degree Toom‘n’half for balanced and unbalanced multiplication”,
E. Antelo, D. Hough and P. Ienne, editors, Proceedings of the 20th TEEE Symposium
on Computer Arithmetic, IEEE, Tubingen, Germany, July 25-27, 2011, pp. 15-222. See
http://bodrato.it/papers

Richard Brent and Paul Zimmermann, “Modern Computer Arithmetic”, version 0.4,
November 2009, http://www.loria.fr/~zimmerma/mca/mca-0.4.pdf

Christoph Burnikel and Joachim Ziegler, “Fast Recursive Division”, Max-Planck-Institut
fuer Informatik Research Report MPI-1-98-1-022,
http://data.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-022

Agner Fog, “Software optimization resources”, online at http: //www . agner . org /
optimize/

Pierrick Gaudry, Alexander Kruppa, Paul Zimmermann, “A GMP-based implementation
of Schoenhage-Strassen’s large integer multiplication algorithm”, ISAAC 2007 Proceedings,
Ontario, Canada, July 29 - August 1, 2007, pp. 167-174, ACM Press. Full text available at
http://hal.inria.fr/docs/00/14/86/20/PDF/fft.final.pdf

Torbjorn Granlund and Peter L. Montgomery, “Division by Invariant Integers using Multi-
plication”, in Proceedings of the SIGPLAN PLDI’94 Conference, June 1994. Also available
ftp://ftp.cwi.nl/pub/pmontgom/divcnst.psad.gz (and .psl.gz).

http://www.math.u-bordeaux.fr/~cohen/
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://www.cacr.math.uwaterloo.ca/hac/
http://gcc.gnu.org/onlinedocs/
ftp://ftp.gnu.org/gnu/gcc/
ftp://ftp.gnu.org/gnu/gcc/
http://www.inria.fr/rrrt/rr-4475.html
http://ln.bodrato.it/issac2007_pdf
http://bodrato.it/papers
http://www.loria.fr/~zimmerma/mca/mca-0.4.pdf
http://data.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-022
http://www.agner.org/optimize/
http://www.agner.org/optimize/
http://hal.inria.fr/docs/00/14/86/20/PDF/fft.final.pdf
ftp://ftp.cwi.nl/pub/pmontgom/divcnst.psa4.gz

146

MPIR 3.0.0

Niels Moller and Torbjorn Granlund, “Improved division by invariant integers”, to appear.
Torbjorn Granlund and Niels Méller, “Division of integers large and small”, to appear.

David Harvey, “The Karatsuba middle product for integers”, (preprint), 2009. Available at
http://www.cims.nyu.edu/ "harvey/mulmid/mulmid.pdf

Tudor Jebelean, “An algorithm for exact division”, Journal of Symbolic Computation, vol-
ume 15, 1993, pp. 169-180. Research report version available
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-35.ps.gz

Tudor Jebelean, “Exact Division with Karatsuba Complexity - Extended Abstract”, RISC-
Linz technical report 96-31,
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-31.ps.gz

Tudor Jebelean, “Practical Integer Division with Karatsuba Complexity”, ISSAC 97, pp.
339-341. Technical report available
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-29.ps.gz

Tudor Jebelean, “A Generalization of the Binary GCD Algorithm”, ISSAC 93, pp. 111-116.
Technical report version available
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1993/93-01.ps.gz

Tudor Jebelean, “A Double-Digit Lehmer-Euclid Algorithm for Finding the GCD of Long
Integers”, Journal of Symbolic Computation, volume 19, 1995, pp. 145-157. Technical
report version also available
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-69.ps.gz

Werner Krandick, Jeremy R. Johnson, “Efficient Multiprecision Floating Point Multiplica-
tion with Exact Rounding”, Technical Report, RISC Linz, 1993, available at ftp://ftp.
risc.uni-linz.ac.at/pub/techreports/1993/93-76.ps.gz

Werner Krandick and Tudor Jebelean, “Bidirectional Exact Integer Division”, Journal of
Symbolic Computation, volume 21, 1996, pp. 441-455. Early technical report version also
available ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1994/94-50.ps.gz

Makoto Matsumoto and Takuji Nishimura, “Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator”, ACM Transactions on Mod-
elling and Computer Simulation, volume 8, January 1998, pp. 3-30. Available online
http://www.math.keio.ac.jp/ nisimura/random/doc/mt.ps.gz (or .pdf)

R. Moenck and A. Borodin, “Fast Modular Transforms via Division”, Proceedings of the
13th Annual IEEE Symposium on Switching and Automata Theory, October 1972, pp. 90-
96. Reprinted as “Fast Modular Transforms”, Journal of Computer and System Sciences,
volume 8, number 3, June 1974, pp. 366-386.

Niels Moller, “On Schoenhage’s algorithm and subquadratic integer GCD computation”,
Math. Comp. 2007. Available online at http://www.lysator.liu.se/ nisse/archive/
S0025-5718-07-02017-0.pdf

Peter L. Montgomery, “Modular Multiplication Without Trial Division”, in Mathematics
of Computation, volume 44, number 170, April 1985.

Thom Mulders, “On short multiplications and divisions”, Appl. Algebra Engrg. Comm.
Comput. 11 (2000), no. 1, pp. 69-83. Tech. report No. 276, Dept. of Comp. Sci.,
ETH Zurich, Nov 1997, available online at ftp://ftp.inf.ethz.ch/pub/publications/
tech-reports/2xx/276.pdf

Arnold Schonhage and Volker Strassen, “Schnelle Multiplikation grosser Zahlen”, Comput-
ing 7, 1971, pp. 281-292.

A. Schonhage, A. F. W. Grotefeld and E. Vetter, "Fast Algorithms, A Multitape Turing
Machine Implementation" BI Wissenschafts-Verlag, Mannheim, 1994.

Kenneth Weber, “The accelerated integer GCD algorithm”, ACM Transactions on Mathe-
matical Software, volume 21, number 1, March 1995, pp. 111-122.

http://www.cims.nyu.edu/~harvey/mulmid/mulmid.pdf
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-35.ps.gz
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-31.ps.gz
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-29.ps.gz
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1993/93-01.ps.gz
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-69.ps.gz
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1993/93-76.ps.gz
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1993/93-76.ps.gz
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1994/94-50.ps.gz
http://www.math.keio.ac.jp/~nisimura/random/doc/mt.ps.gz
http://www.lysator.liu.se/~nisse/archive/S0025-5718-07-02017-0.pdf
http://www.lysator.liu.se/~nisse/archive/S0025-5718-07-02017-0.pdf
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/2xx/276.pdf
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/2xx/276.pdf

Appendix B: References 147

e Paul Zimmermann, “Karatsuba Square Root”, INRIA Research Report 3805, November
1999, http://www.inria.fr/rrrt/rr-3805.html

e Paul Zimmermann, “A Proof of GMP Fast Division and Square Root Implementations”,
http://www.loria.fr/ zimmerma/papers/proof-div-sqrt.ps.gz

e Dan Zuras, “On Squaring and Multiplying Large Integers”, ARITH-11: IEEE Symposium
on Computer Arithmetic, 1993, pp. 260 to 271. Reprinted as “More on Multiplying and
Squaring Large Integers”, IEEE Transactions on Computers, volume 43, number 8, August
1994, pp. 899-908.

http://www.inria.fr/rrrt/rr-3805.html
http://www.loria.fr/~zimmerma/papers/proof-div-sqrt.ps.gz

148

MPIR 3.0.0

Appendix C GNU Free Documentation License

0.

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

http://fsf.org/

Appendix C: GNU Free Documentation License 149

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

150

MPIR 3.0.0

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

O

Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.
H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

Appendix C: GNU Free Documentation License 151

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled

152

MPIR 3.0.0

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been

Appendix C: GNU Free Documentation License 153

10.

11.

terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http://
www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-

SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

154 MPIR 3.0.0

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled °‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Concept Index

Concept Index

#

#include ... 16
—=build. . 4
--disable-fft........ il 7
--disable-shared 4
--disable-static............ ... i 4
--—enable-allocaccooiiiiiiiiiiiiiia.. 7
——enable-assertiiiiiiiiiiii 8
——enable—CXX...... ..o 6
-—enable-fat........... il 5
—-enable-gmpcompatot 4
--enable-profiling 8, 25
——exec-prefix......... 3
—mhoSt . 4
—eprefix L. 3
—-with-yasm..... ..o 6
-finstrument-functions 26
Net Interface.............ooiiiiiiiiiii L. 87
2

2exp functions ool 22
8

BOXBO . . v e et 14
A

ABI . 5, 8
About thismanual 2
AC_CHECK_LIB......oouiiiiiiiiiiiiiiiiiienen 27
AT 9
Algorithms ... i 111
BLL0CA .« ettt 7
Allocation of memory 106
AMDGA . .o 9
Application Binary Interface....................... 8
Arithmetic functions...................... 32, 47, 54
ARM .o 13
Assembler cache handling....................... 131
Assembler carry propagation.................... 131
Assembler code organisation 130
Assembler codingo 130
Assembler floating Point 132
Assembler loop unrolling 134
Assembler SIMD i 133
Assembler software pipelining 134
Assembler writing guide......................... 135
Assertion checking......... o 8, 24
Assignment functions.................. 30, 46, 52, 53
Autoconf. 27

155
B
Basics ... i 16
Binomial coefficient algorithm................... 128
Binomial coefficient functions..................... 38
Bit manipulation functions................. 39
Bit scanning functions.............. L 40
Bit shift lefto 32
Bit shift right 33
Bitsper limb........... .. 20
Bug reporting ... 28
Build directory....... ..o 3
Build notes for binary packaging 10
Build notes for MSVC............c.ooiiiiiil 11
Build notes for particular systems................ 13
Build options ... oo 3
Build problems known 14
Build system o i 4
Building MPIR......... o o 3
Buserror.........co i 23
C
Ccompiler.........oouiiiiiiiii i 6
CH+ compiler. ... 7
C++interface. ... 78
C++ interface internals 139
C++ istream input ..., 76
C++ ostream outpubooviiii i 72
CH+ SUPPOTE « v 6
CC e 6
CC_FOR_BUILDttt 6
CFLAGS . .o 6
Checker. ... 25
checkergcc........ ... 25
Code organisation.............. 130
Comparison functions..................... 39, 48, 55
Compatibility with older versions................. 21
Conditions for copying MPIR...................... 1
Configuring MPIR oot 3
Congruence algorithm............ 120
Congruence functions, 34
Constants.o.utin 20
Contributors..........oooviiiiii i 141
Conventions for parameters 19
Conventions for variables......................... 18
Conversion functions...................... 31, 47, 53
Copying conditions.cooeeviiiiiniiiean. 1
CPPELAGS ..ot 6
CPU tyPES - vt vttt 2,5
Cross compilingoooiiiii i 4
Custom allocationooiiit. 106
(0. 7
CXXFLAGS . ot e 7
Cygwin ... 13
D
Debugging ... 23
Digits in an integer................o i 43
Divisibility algorithm 120

156

Divisibility functions................ ...t 34
Divisibility testing ... 22
Division algorithms 118
Division functions......................... 33, 47, 54
DS ettt 13
DocBook. ... 8
Documentation formats 8
Documentation license 148
DV 8

Efficiency ... 21
Emacso 27
Exact division functions................. 34
Exact remainder............. ... oo 120
Exec prefix. 3
Execution profiling o 8, 25
Exponentiation functions..................... 35, 55
Export.... ..o 42
Extended GCD ... 37

F

Factor removal functions 38
Factorial algorithm.......... 128
Factorial functions il 38
Fast Fourier Transform.......................... 115
Fat binary ... i 5
FFT multiplication........................... 7,115
Fibonacci number algorithm 129
Fibonacci sequence functions..................... 38
Float arithmetic functions........................ 54
Float assignment functions 52, 53
Float comparison functions....................... 55
Float conversion functions........................ 53
Float functions........... ..o, 50
Float initialization functions.................. 50, 53
Float input and output functions................. 55
Float internals............... 137
Float miscellaneous functions..................... 56
Float random number functions.................. 56
Float rounding functions 56
Float sign tests L 55
Floating point mode 13
Floating-point functions.......................... 50
Floating-point number 16
fnccheck ..o 26
Formatted input 74
Formatted output.........l 69
Free Documentation License..................... 148
frexXp ... 32, 53
Function classes.................................. 18
FunctionCheck, 26

G

GO 14
GCC Checker 25
GCD algorithmsol 121
GCDextended 37
GCD functions. ...t 37
GDB .. 24
Generic C. .. 5

GNU Debugger ... 24

MPIR 3.0.0

GNU Free Documentation License............... 148
BPTOf . 26
Greatest common divisor algorithms............. 121
Greatest common divisor functions............... 37

H

Hardware floating point mode.................... 13
Headers.........coooiiii 16
Heap problems......... ... i 24
Homepage........ ... i 2
Host system............ ..o oo, 4
HP-UX oo 9

I

I/O functions..........ocoiviiiiiiin.. 40, 49, 55
1886 . et 14
TA-64 . 9
Import.... ..o 41
In-place operations.............. 22
Include files........ ..o 16
info-lookup-symbol............coviuiiiiiiinnnnnn 27
Initialization functions......... 29, 30, 46, 50, 53, 67
Initializing and clearing 21
Input functions........................ 40, 49, 55, 76
Install prefix ... 3
Installing MPIR........... it 3
Instruction Set Architecture....................... 8
instrument-functions........................... 26
Integer.o 16
Integer arithmetic functions...................... 32
Integer assignment functions 30
Integer bit manipulation functions................ 39
Integer comparison functions..................... 39
Integer conversion functions...................... 31
Integer division functions......................... 33
Integer exponentiation functions.................. 35
Integer export. 42
Integer functions............. ..., 29
Integer import ... 41
Integer initialization functions 29, 30
Integer input and output functions............... 40
Integer internals 136
Integer logical functions.......................... 39
Integer miscellaneous functions................... 43
Integer random number functions................. 41
Integer root functions 35
Integer sign tests............ 39
Integer special functions.......................... 43
Internals........ .o i i 136
Introduction 2
Inverse modulo functions......................... 37
IS A 8
istream input.......... i 76

J

Jacobi symbol algorithm 123
Jacobi symbol functions............. 37

K

Karatsuba multiplication........................ 112

Concept Index

Karatsuba square root algorithm................ 124
Kronecker symbol functions 38

L

Language bindings il 108
LCM functions.........c.ooiiiiiiiiineiiinn... 37
Least common multiple functions................. 37
Legendre symbol functions 37
Libmpir. ..ot 16
LibmPirXX o 16
Libraries. ... 16
Libtool ... 16
Libtool versioning.................. . 10
License conditions............o i 1
Limb ..o 17
Limb size ... 20
Linear congruential algorithm 130
Linear congruential random numbers............. 67
Linking o 16
Logical functions.................ooooiiit 39
Low-level functions........... ... 58
Lucas number algorithm 129
Lucas number functions.......................... 38

M

Mailing lists. ... 2
Malloc debugger ..o 24
Malloc problems 24
Managed Interface 87
Memory allocationcoiinn.. 106
Memory managementeeeeuennn.. 20
Mersenne twister algorithm 130
Mersenne twister random numbers 67
Microsoft.Net 87
MINGW . e 13
Miscellaneous float functions 56
Miscellaneous integer functions................... 43
MM X 14
Modular inverse functions........................ 37
Most significant bit L. 43
MPIR version number........................ 20, 21
mpir.h. ... 16
mpirxx.h.....l 78
MPN_PATH . ..o e e 8
MS Windowscviiiiii e 13
MS-DOS ..o 13
MSVC . 11
Multi-threading 20
Multiplication algorithms 111

Nails. .o 65
Native compilation........... 4
Next candidate prime function 37
Next prime function............. 36
Nomenclature...............o i 16
Non-Unix systems. ... 3
Nth root algorithm........... 125
Number sequences ..., 23
Number theoretic functions....................... 36
Numerator and denominator 48

157
O
obstackoutput............ ...l 72
Optimizing performance.......................... 15
ostreamoutput...........l 72
Other languages 108
Output functions...................... 40, 49, 55, 71
P
Packaged builds............... ool 10
Parameter conventions 19
Particular systemsol 13
Past GMP/MPIR versions 21
PF 8
Perfect power algorithm......................... 126
Perfect power functions 35
Perfect square algorithm 125
Perfect square functions.......................... 35
Postscript 8
Powering algorithms 124
Powering functions 35, 55
PowerPC.o 9
Precision of floatst 50
Precision of hardware floating point 13
Prefix. ... 3
Prime testing algorithms........................ 128
Prime testing functions........................... 36
Primorial functions..............o, 38
printf formatted output............ L 69
Probable prime testing functions 36
Prof ... 26
Profiling o 25
R
Radix conversion algorithms..................... 126
Random number algorithms..................... 130
Random number functions................ 41, 56, 67
Random number seeding 68
Random number state............................ 67
Random state.............coooiiiiiiiiiiii, 17
Rational arithmetic............... 23
Rational arithmetic functions..................... 47
Rational assignment functions.................... 46
Rational comparison functions.................... 48
Rational conversion functions..................... 47
Rational initialization functions 46
Rational input and output functions.............. 49
Rational internals............................... 136
Rational number............o 16
Rational number functions 46
Rational numerator and denominator............. 48
Rational sign tests L., 48
Raw output internals................ 139
Reallocationsooooi it 22
Reentrancyo ool 20
References ... 145
Remove factor functions.......................... 38
Reporting bugs ... 28
Root extraction algorithm....................... 125
Root extraction algorithms...................... 124
Root extraction functions..................... 35, 54
Root testing functions............ 35

Rounding functions L 56

158

S

Scan bit functions........... ... 40
scanf formatted input oL 74
Seeding random numbers............ 68
Segmentation violation........................... 23
Shared library versioning......................... 10
Sign tests. ..o 39, 48, 55
Size in digits.......ooviiiiiii 43
Small operandso i 21
Solaris . ..o 10, 14
SPATC .o et 13, 14
Sparc VO. ..o 10
Special integer functions 43
Square root algorithm................ 124
SO 14
Stack backtrace o i 24
Stack overflow oL 7,23
Static inking i 21
stdarg.h......... 16
stdio.h. ..o oo 16
SUNL. et 10
SYStEIMS. ..ot 13

T

Temporary memoryoooviiiiiiia. 7
Texinfo ... i 8
Text input/outputovvvviii i 23
Thread safety ... 20
Toom multiplication................... 113, 115, 117

Types. 16

MPIR 3.0.0

U

ui and si functions o L, 22
Unbalanced multiplication....................... 117
Upward compatibility 21
Useful macros and constants 20
User-defined precision...............coooivveiinn.. 50

A\

Valgrind ... 25
Variable conventionsccooiiii... 18
Version number o i 20, 21
Visual Studio ... 11

\%\%

Web pagecoovi 2
Windowsoeii 13, 17

X8O 14
X 13
XML 8
XOP o 14

Function and Type Index

Function and Type Index

GMP_CC ittt ettt e e e e e 21
__GMP_CFLAGS . . . e 21
__GNU_MP_VERSIONttt 20
__GNU_MP_VERSION_MINORcvvuurnnnnnnnnnn 20
__GNU_MP_VERSION_PATCHLEVEL................... 20
__MPIR_VERSIONoiiiiiiiiiiiinnininnnnnn. 21
__MPIR_VERSION_MINOR...........cccevviiiiin... 21
__MPIR_VERSION_PATCHLEVEL................oo... 21
_MPZ_realloCt 44
A
DS 80, 81, 83
AbSs. ..o 94, 100, 103
Allocate ...l 91, 98, 101
AllocatedPrecision............... ..o 101
AllocatedSize........ ...l 91
ApproximateSizeInBase...................... 92, 98
B
Binomial 95
BITS_PER_LIMB...... ..ottt 105
C
Canonicalize............ ...l 98
cell .. i 83
Ceiling ..o 103
<311« 2 80, 81, 83
CompareAbsTo.......ooviiiiiiiiiiiinn. 94
CompareTo..........ovviiiiiiiiiann... 93, 99, 103
ComplementBit..............ooiiiiiiiiiiiiiiit, 94
(673 <32 104
D
Defaultooiinii 104
DefaultPrecision...........ccoviiuiiinnennnnn. 100
Denominatorouuuiiit i 98
DivideExactly................ooiiiiiiia, 94
E
Equalsooiiniiiiiiii 93, 99, 103
Export<T> 95
F
Factorialo 95
Fibonacci..........oooiiiiiii i 96
FAndBat. ..ot 94
FitsInt......cooiiiiiiiiiiii 92, 102
FitsLong...............ooiiiiiiiiiii, 92, 101
FitsShort, 92, 102
FitsUint...... ... i 92, 101
FitsUlong, 92, 101

FitsUshort, 92, 102

159
F100T . 83
Floor. ... 103
G
GCA et 96
GetBit.... ..o 94
GetFloat ...t 104
GetFloatBits...........oiiiii i 104
GetFloatChunky iiii., 104
GetFloatLimbsChunky...............cooinnnnn.. 105
GetHashCode..............coiiiiiiiinn.. 93, 99, 103
GetInt......oooiiiii 104
GetIntBits..............oiiiiiiii 104
GetIntBitsChunky................oooiiiiiiaa.. 104
GetLimb...... ... 91, 104
GetLimbBits............oiiiiiiii 104
gmp_asprintf........... ...l 72
gmp_fprintf 71
gmp_fscanf ool 76
GMP_LIMB_BITS.......coiiiiiiiiiiiiiiin e 66
GMP_NAIL _BITS.ottt 66
GMP_NAIL_MASK. 66
GMP_NUMB_BITS.ottt 66
GMP_NUMB_MASK. 66
GMP_NUMB_MAX i 66
gmp_obstack_printf.........o 72
gmp_obstack_vprintf.........o oL 72
gmp_printf il 71
gMP_randClasSS.vuuertt et 84
gmp_randclass::get_f.......... ... 84
gmp_randclass::get_z_bits..................... 84
gmp_randclass::get_z_range.................... 84
gmp_randclass::gmp_randclass 84
gmp_randclass::seed............................ 84
gmp_randclear............... ..o, 67
gmp_randinit_default..................... 67
gmp_randinit_l1c_2eXp.........c.iiiiiiiiiiiiiin. 67
gmp_randinit_lc_2exp_size..................... 67
gmp_randinit_mt 67
gmp_randinit_set.............. ...l 67
gmp_randseed........... i 68
gmp_randseed_ui 68
gmp_randstate_t i 17
gmp_scanf 76
gmp_snprintf........... ...l 71
gmp_sprintf 71
gmp_sscanf il 76
gmp_urandomb_ui 68
gmp_urandomm_ui 68
gmp_vasprintf......... ol 72
GMP_VerSIONooiiuuiiiiiiiiiiiiiaaan 21
GMP_VERSION..... ..ot 105
gmp_viprintf.. L 71
gmp_viscanfl 76
gmp_vprintf 71
gmp_vscant 76
gmp_vsnprintf.. i 71
gmp_vsprintf...... il 71
gmp_vsscanf ... 76

160

H

HammingDistance 94
HugeFloat.............coiiiiiiinnne. 87, 100, 101
HugeInt..........., 87, 91
HugeRational 87, 97
hypot ... 83

ImPOTt<T> ottt 95
INVert .ottt 96, 100
IsCongruentTo......cooiiiinnnnnnn. 94, 95
IsCongruentToModPowerOf2...................... 95
IsDivisibleBy............ ... 94
IsDivisibleByPowerOf2 94
IsInteger..... ...t 102
IsLikelyPrime........ ..o, 95
IsPerfectPower, 95
IsPerfectSquare................................ 95
IsProbablePrime, 95

J

Jacobd . o 95

K

Kronecker ..ottt 95

5 96
Legendre ... 95
LinearCongruential............................ 104
1Ong . 17
Lucas.... ..o 96

MersenneTwisStercoviiiiiinnennnnnnnn. 104
o Yo P 93
mp_bitcnt_t.............. 17
mp_bits_per_limb.............l 20
MP_eXP_t .. 16
mp_get_memory_functions...................... 107
mp_limb_t 17
mp_set_memory_functions...................... 106
mp_size_t...... 17
mpf_abs...... .. 55
mpf_add.......... .. 54
mpf_add_ui........ooiiii 54
mpf_cedl 56
mpf_class............. ool 78
mpf_class::fits_sint_p.................... ... 83
mpf_class::fits_slong p....................... 83
mpf_class::fits_sshort_p...................... 83
mpf_class::fits_uint_p............... 83
mpf_class::fits_ulong p....................... 83
mpf_class::fits_ushort_p...................... 83
mpf_class::get_d........... ool 83
mpf_class::get_mpf_t........................ 79
mpf_class::get_prec............. ... 84
mpf_class::get_si..........coiiiiiiiiiiiiiiii, 83

mpf_class::

MPIR 3.0.0

mpf_class::get_ui..............iiiiiiiia, 83
mpf_class::mpf_class........................... 82
mpf_class::operator=......................... 83
mpf_class::Set_Prec.........c.covviiiiiiiininnnn. 84
mpf_class::set_prec_raw....................... 84
mpf_class::set_str............ il 83
mpf _ClasS:iSWaP ..ot 83
mpf_clear 51
mpf_clearsiiiiiiiii 51
mMpEf_CIMP. ... o 55
mpf_cmp_d...... 55
mpf_cmp_Si...... ... 55
mpf_cmp_ui..... ... 55
mpf_div..........o oo oo 54
mpf_div_2exp........ 55
mpf_div_ui..... ... 54
MPE _@Q . 55
mpf_fits_sint_p........ il 56
mpf_fits_slong p............o it 56
mpf_fits_sshort_p................. 56
mpf_fits_uint_p........ il 56
mpf_fits_ulong p......... il 56
mpf_fits_ushort_p................. ... L 56
mpf_floor 56
mpf_get_d...... ... il 53
mpf_get_d_2eXp ... 53
mpf_get_default_prec.................. 50
mpf_get_prec........oooiiiiiiiiiiiiiiii 51
mpf_get_si..... ..o 53
mpf_get_str..... il 54
mpf_get_ui..... ..o 53
mpf_init 51
mpf_init_set........ il 53
mpf_init_set_d i 53
mpf_init_set_si ... 53
mpf_init_set_str........... il 53
mpf_init_set_ui.....................il 53
mpf_init2...... 51
mpf_inits...... 51
mpf_inp_str............ . 56
mpf_integer_ p........... ... 56
mpf_mul................ 54
mpf MUl _2€XP.....viiiiiiiiiii i 55
mpf_mul_ui..... ... 54
mpf _neg............. 55
mpf_out_sStr............ ... 55
mpf_pow_ui..... ..o 55
mpf_random2............ i 57
mpf_reldiff.......... ... 55
mpf_rrandomb...........o il 57
mpf_set.............. 52
mpf_set_d....... ... i il 52
mpf_set_default_prec........................... 50
mpf_set_prec.......... ... il 51
mpf_set_prec_raw............. ...t 51
mpf_set_q.......... ... il 52
mpf_set_si......... il 52
mpf_set_Str......... ... 52
mpf_set_ui....... ..o 52
mpf_set_z...... 52
mpf_Sgn......... 55
mpf_sqrt ... 54
mpf_sqrt_ui........ ... il 54
mpf_sub. ... 54
mpf_sub_ui....... ... i 54

Function and Type Index

MPE _SWaD .o tie e 52
mpf_t ... 16
mpf_trunc........ ... 56
mpf_ui div...... ... 54
mpf_ui_sub...... ... i 54
mpf_urandomb......... o il 56
mpir_version........... ... il 21
MPIR_VERSION....... ..ot 105
MpirRandomcoiiiiiiiiiiiia, 87, 104
MpirSettings...... ..o 105
mpn_add............ .. 58
mpn_add_1........ ... 58
mpn_add D ... 58
mpn_addmul_1......... il 59
11} o3 o HER=Y « ' N « A 64
MPN_ANAN_Th ...ttt 64
10103« T« 62
11} o3 o B of o) 1 65
MPN_COPYA ..ottt 65
MPN_COPYi ...vvviii i 65
mpn_divexact_by3.........ol 61
mpn_divexact_by3c........ ... 61
mpn_divmod_1......... il 61
mpn_divrem..............i i 60
mpn_divrem_1........ i il 61
MPN_GCA. ...\t 62
mpn_gcd_1 62
MPN_GCAEXT . .\ttt 62
mpn_get_Str....... ... 63
mpn_hamdist............ il 64
mpn_ior_m..........iii il 64
MPN_10TN_ M. ..t 65
mpn_lshift........ il 61
mpn_mod_1....... il 61
mpn_mul............. . 60
mpn_mul_1....... 59
mpn_mul_Mo..........ii 59
MPN_Nand_Tl. ...ttt 65
1103« 4 1= - 59
MPN_NIOT M.ttt 65
mpn_perfect_square_p...............ooiiiiii.... 64
MPN_POPCOUNTttt 64
MPN_TANAOM . . .\ vttt 63
mpn_random2........ ... 63
mpn_randomb......... ... il 64
mpn_rrandom.t 64
mpn_rshift.........l 61
mpn_scan0ttt 63
mpn_scanl il 63
mpn_set_Str ... 63
1103« HEE T ol 60
1] o3 B Te s o v ol =Y N 62
mpn_sub............. 59
mpn_sub_1...... 59
MPO_SUD_M....oiiiiiiiiiiii i 59
mpn_submul_1......... il 60
mpn_tdiv_qr........ ... 60
mpn_urandomb......... ..ol 63
mpn_urandomm.ovuiiiiiiii 64
11} o3 o Wb: « Fo) ol + KPR 65
1024 Hb o3 ol « R 64
1193 4 -1 ol R 65
mpg_abs............. 48
MPg_add. ...t 47

161
MPQG_CLaSS ottt ettt 78
mpq_class::canonicalize....................... 81
mpg_class::get_d............l 81
mpg_class::get_den.............. 81
mpq_class::get_den_mpz_t...................... 82
mpg_class::get_mpq_t..................ia 79
mpg_class::get_num..............., 81
mpg_class::get_num_mpz_t...................... 82
mpg_class::get_str.................. 81
mpg_class::mpq_class............ooiiiinnnnnn... 81
mpg_class::set_str.............l 81
MPQ_ClasSS:iiSWaP ...vvviiiiiiiiiiiiiiiiiii e 81
mpg_clear il i 46
mpg_Clearsiiiiiiiiii i 46
1] oo e 1 48
MPQ_CMP_S1 ...t 48
MPQ_CMP_Ul ... 48
1] oo o1 48
mpg_denref ... 48
mpg div..... ... 47
mpq_div_2eXp.......cooiiiiiiiii 48
mpg_equal il 48
mpg_get_d............. 47
mpg_get_den................. i, 49
MPQ_get_MUMoviiittt ittt 49
mpg_get_Str....... ... 47
mpg_init 46
mpg_inits...... ... il 46
mpg_inp_Str........ ... 49
mpg_inv............. 48
MPG_MUL. ..ottt 47
MPg MUL_2€XP. ..ottt 47
10 o T 4 1= - 48
mpg_numref 48
mpg_out_Str.........ooiiiiiii 49
mMpg_Set.... ..o 46
MPG_S€t_d ...oviiiii 47
mpg_set_den............ i 49
mpg_set_f 47
MPQ_SEt_NUM......oviiiitiiiiiiiiii i 49
mpg_Set_Si.....cooiiiiiiiii 46
mpg_set_str...... i 46
mpg_Set_Ul......c.ouuiii 46
MPg_S€t_Z ... 46
1] o T T~ « 48
MPG_SUD. ..ottt 47
MPG_SWAD « .+t vveeeitee e e ei e 47
mpa_t.. ... 16
mpz_2fac_ui............ 38
mpz_abs............. 33
mpz_add............... 32
mpz_add_ui....... ..o 32
mpz_addmul 32
mpz_addmul _ui............ol 32
mpzZ_and. ...t 39
mpz_array_init 43
mpz_bin_ui........ o il 38
mpz_bin_uiui........ ... ool 38
MPZ_CAiV_g .. 33
mpz_cdivV_g_2€XPoiiiiiiii i 33
mpz_cdiv_q ui...... ... 33
mpz_cdiv_qr ... 33
mpz_cdiv_qr_ui ool 33
MPZ_CAiV_T ... 33
mpz_cdiv_r_2eXp 33

162

mpz_cdiv_r_ui......... ... 33
mpz_cdiv_ui........ ... i 33
MPZ_ClassS ..ottt 78
mpz_class::fits_sint_p.................... ... 80
mpz_class::fits_slong p....................... 80
mpz_class::fits_sshort_p...................... 80
mpz_class::fits_uint_p.................... ... 80
mpz_class::fits_ulong p....................... 80
mpz_class::fits_ushort_p...................... 80
mpz_class::get_d......... o il 80
mpz_class::get_mpz_t................iiiiiaa, 79
mpz_class::get_si............iiiiiiiiiiiii 80
mpz_class::get_str............. 80
mpz_class::get_ui................. ... 80
mpz_class::mpz_class.............cooiiiiiiin... 79
mpz_class::set_str............ 80
MPZ_ClasSS:ISWAP «..vvveiitee i, 80
MPZ_Clear ...t 29
MPZ_CLlEATS ...\ttt 29
mpz_clrbit 40
1] o2 1 39
mpz_cmp_d ... 39
MPZ_CIMP_S1 ..o 39
MPZ_CMP_Ulot 39
MPZ_CIPabS . .. 39
mpz_cmpabs_d.......... ... o ool 39
mpz_cmpabs_ui............ .. il 39
1] o3 o] o> 39
MPZ_Combit ... 40
MPZ_congruent_2eXP_P......ovviuiriniiiiiininnnnnnns 34
MPZ_CONGTUENE_P .. .tiiiiiiiiiiiiiiiiiinnn 34
mpz_congruent_ui_p.................... oo 34
mpz_divexact......... i 34
mpz_divexact_ui 34
mpz_divisible_2eXp_p........ciiiiiiiiiiiiia, 34
mpz_divisible p......... il 34
mpz_divisible_ui_p............. ...l 34
1] oF- A=A A=Y « N o NP 43
MPZ_EXPOTTE .. vttt 42
mpz_fac_ui........ ..o 38
mpz_fdiv_q...... ..o 33
mpz_fdiv_q_2exXp ... 33
mpz_fdiv_q ui............ 33
mpz_fdiv_qr......... ... 33
mpz_fdiv_qr_ui ool 33
mpz_fdiv_r... 33
mpz_fdiv_r_2exp ... 33
mpz_fdiv_r_ui........ ...l 33
mpz_fdiv_ui............. 33
mpz_fib_ui...... ... i 38
mpz_f£ib2_ui......o 38
mpz_fits_sint_p...... il 43
mpz_fits_slong p............l 43
mpz_fits_sshort_p............... ool 43
mpz_fits_uint_p........... ..o il 43
mpz_fits_ulong p............l 43
mpz_fits_ushort_p............... ool 43
MPZ_GCA. ettt 37
mpz_gcd_Ul ... 37
MPZ_gCAeXt ..\t 37
mpz_get_d....... ... i il 31
mpz_get_d_2eXp ... 32
mpz_get_si.........l 18, 31
mpz_get_Str...... ..ot 32

MPZ_ZET _SX .\ttt 31

MPIR 3.0.0

mpz_get_ul ... 18, 31
MPZ_Get _UX ...ttt 31
mpz_getlimbn............ o il 44
mpz_hamdist............ 39
MPZ_importl 41
mpz_init 29
mpz_init_set........ i il 31
mpz_init_set_d.............ol 31
mpz_init_set_si.......... ... il 31
mpz_init_set_str........... ool 31
mpz_init_set_sx 31
mpz_init_set_ui...........ol 31
mpz_init_set_uxl 31
mpz_init2...... ... oo ool 29
mpz_inits i 29
MPZ_inp_Traw..........coiiiiiiiiiiii 41
mpz_inp_str............. i 40
mpz_invert 37
mpz_ior......... . 39
mpz_jacobi...... ... 37
mpz_kronecker............ i 38
mpz_kronecker_si............ ool 38
mpz_kronecker_ui............. ool 38
MPZ_1CM..... ...t 37
MPZ_L1Cm_UL ...ttt 37
mpz_legendre............l 37
mpz_likely_prime_p............................. 36
mpz_limbs_finish........... oo ool 44
mpz_limbs_modify..........l 44
mpz_limbs_readciiiiiii 44
mpz_limbs_writel 44
mpz_lucnum_ui......... ... 38
mpz_lucnum2_ui o il 38
mpz_mfac_uiui............. 38
MPZ_MOd.ot 34
mpz_mod_Ui.........l 34
mpz_mul...... ... 32
MPZ_MUL_2€XDP . ..ottt 32
mpz_mul_si........l 32
mpz_mul_ui..... ... 32
MPZ_TEE . o ottt ettt e e 33
mpz_next_prime_candidate...................... 37
mpz_nextprime.......... il 36
mpz_nthroot.............. oo 35
MPZ_0dd_P ..ttt 43
MPZ_OUL _TAW . o et ttttee ettt e e 41
mpzZ_out_Str....... ... 40
mpz_perfect_power_P...........c.ciiiiiiiiiiiii.. 35
mpz_perfect_square_p...............oiiiiinnn... 35
MPZ_POPCOUNTt . ..ottt 39
MPZ_POW_Ulooiiiiiiiiiiiiii i 35
1) oA o Yo} 35
MPZ_POWm_Ul..........oooiiiiiii 35
mpz_primorial_ui............ il 38
mpz_probab_prime_p.............l 36
mpz_probable_prime_p............... ... 36
mpz_reallocC2......... 29
MPZ_TEMOVE . .. ttttttteeeettteeteeeeeeeeeeeeeneens 38
mpz_roinit m........o ool 45
MPZ_ROINIT _N.....ooiii i 45
MPZ_TOOL .. 35
1] o722 af oo} v o 35
MPZ_rrandombovutitiiiii e 41
MPZ_SCANO0 ...\ttt 40
mpz_scanl ool 40

Function and Type Index

MPZ_S€T. ..ottt 30
mpz_set_d.........l 30
mpz_set_f 30
MPZ_SET _Q .ttt 30
mpz_set_si............. ... 17, 18, 30
mpz_set_str............ il 30
MPZ_SET _SX .\ttt 30
mpz_set_ui.............ol 17, 18, 30
MPZ_SEL_UX ..o\ttt 30
mpz_setbit 40
MPZ_SEI. .« o\ttt ettt et 39
mpz_si_kronecker il 38
MPZ_SIZ€ ... oo 44
mpz_sizeinbase 43
MPZ_SATL ..ot 35
1] oF- 0 =To s o vh o 35
mpz_sub............. 32
mpz_sub_ui......... i 32
MPZ_SUbMULttt 32
mpz_submul_ui......... ... 32
1] o201 - o T 30
11} o 16
mpz_tdiv_g.... .o 33
mpzZ_tdiv_g_2€eXP ..ottt 33
mpz_tdiv_q ui........ ... 33
mpz_tdiv_qr...... ... 33
mpz_tdiv_qr_ui oo il 33
mpz_tdiv_T...... ... 33
mpz_tdiv_r_2exp......... ... 33
mpz_tdiv_r_ui............ ...l 33
mpz_tdiv_ui........ ... oo i 33
mpz_tstbit..... ..o 40
mpz_ui_kronecker 38
mpz_ui_pow_ui............l 35
mpz_ui_sub........ 32
mpz_urandomb.......... ... i 41
MPZ_Uurandomm.ooviiiiiiiinniiiiiiienenaaa., 41
1103200 do il 39

N

NAIL_BITS_PER_LIMB...... ..ot 105
NextPrimeCandidate............oovvvinnnunnennn. 96
NUMeTrator . oottt e e 98

O

operator""l 80, 81, 83
OPETATOT ¢ e e vttt 80
OPETraAtoOT/ oot 80
OPerator<< 72
OPeratoOr>> ..\ttt 76, 77, 82

163
P
PopCount 94
POWeT . ot 95
PowerMod ...t e 94
Precision..........oiiiiiiiiiiii i 101
Primorial ...t e 95
Read ...t 95, 100, 103
Reallocateo, 91, 101
RelativeDifferenceFrom....................... 103
RemoveFactors........cciviiiiniiiii i, 96
ROOt .o 96
RoundingMode...........cooiiiiiiiiiiiii 105
Seed . .o 104
SetBit. . i 94
SEETO « vttt 92, 99, 102
<7 = ¢ 80, 81, 83
SigN 94, 100, 103
SaZE ettt 91
SQTL ..o 80, 83
SquareRoot i 96, 103
BWAD « « v v vttt 80, 81, 83
SWaAD . 92, 99, 102
T
ToDoublecoviiiiiiiiiinnaan.. 92, 98, 102
ToInt ..ot 92, 102
ToLong ..o 92, 102
ToStringcoviiiiii 92, 98, 102
ToStringDigits 105
ToUInt .o ove e 92, 102
TOULONG . . vt 92, 102
g 1 4 Lo PP 83
TruncCate ...t e 103
USABLE_BITS_PER_LIMBciiviiiinen.. 105
Vv
Valueoooiii i 92, 98, 102

Write.........o oo il 95, 100, 103

	MPIR Copying Conditions
	Introduction to MPIR
	How to use this Manual

	Installing MPIR
	Build Options
	ABI and ISA
	Notes for Package Builds
	Building with Microsoft Visual Studio
	Notes for Particular Systems
	Known Build Problems
	Performance optimization

	MPIR Basics
	Headers and Libraries
	Nomenclature and Types
	MPIR on Windows x64
	Function Classes
	Variable Conventions
	Parameter Conventions
	Memory Management
	Reentrancy
	Useful Macros and Constants
	Compatibility with older versions
	Efficiency
	Debugging
	Profiling
	Autoconf
	Emacs

	Reporting Bugs
	Integer Functions
	Initialization Functions
	Assignment Functions
	Combined Initialization and Assignment Functions
	Conversion Functions
	Arithmetic Functions
	Division Functions
	Exponentiation Functions
	Root Extraction Functions
	Number Theoretic Functions
	Comparison Functions
	Logical and Bit Manipulation Functions
	Input and Output Functions
	Random Number Functions
	Integer Import and Export
	Miscellaneous Functions
	Special Functions

	Rational Number Functions
	Initialization and Assignment Functions
	Conversion Functions
	Arithmetic Functions
	Comparison Functions
	Applying Integer Functions to Rationals
	Input and Output Functions

	Floating-point Functions
	Initialization Functions
	Assignment Functions
	Combined Initialization and Assignment Functions
	Conversion Functions
	Arithmetic Functions
	Comparison Functions
	Input and Output Functions
	Miscellaneous Functions

	Low-level Functions
	Nails

	Random Number Functions
	Random State Initialization
	Random State Seeding
	Random State Miscellaneous

	Formatted Output
	Format Strings
	Functions
	C++ Formatted Output

	Formatted Input
	Formatted Input Strings
	Formatted Input Functions
	C++ Formatted Input

	C++ Class Interface
	C++ Interface General
	C++ Interface Integers
	C++ Interface Rationals
	C++ Interface Floats
	C++ Interface Random Numbers
	C++ Interface Limitations

	.Net Interface
	MPIR.Net Feature Overview
	Building MPIR.Net
	MPIR.Net Integers
	MPIR.Net Rationals
	MPIR.Net Floats
	MPIR.Net Random Numbers
	MPIR.Net Settings

	Custom Allocation
	Language Bindings
	Algorithms
	Multiplication
	Basecase Multiplication
	Karatsuba Multiplication
	Toom 3-Way Multiplication
	Toom 4-Way Multiplication
	FFT Multiplication
	Other Multiplication
	Unbalanced Multiplication

	Division Algorithms
	Single Limb Division
	Basecase Division
	Divide and Conquer Division
	Exact Division
	Exact Remainder
	Small Quotient Division

	Greatest Common Divisor
	Binary GCD
	Lehmer's GCD
	Subquadratic GCD
	Extended GCD
	Jacobi Symbol

	Powering Algorithms
	Normal Powering
	Modular Powering

	Root Extraction Algorithms
	Square Root
	Nth Root
	Perfect Square
	Perfect Power

	Radix Conversion
	Binary to Radix
	Radix to Binary

	Other Algorithms
	Prime Testing
	Factorial
	Binomial Coefficients
	Fibonacci Numbers
	Lucas Numbers
	Random Numbers

	Assembler Coding
	Code Organisation
	Assembler Basics
	Carry Propagation
	Cache Handling
	Functional Units
	Floating Point
	SIMD Instructions
	Software Pipelining
	Loop Unrolling
	Writing Guide

	Internals
	Integer Internals
	Rational Internals
	Float Internals
	Raw Output Internals
	C++ Interface Internals

	Contributors
	References
	Books
	Papers

	GNU Free Documentation License
	Concept Index
	Function and Type Index

